Desempeño morfológico de lechuga cultivada con tres soluciones hidropónicas en sistema NFT recirculante
Morphological Performance of Lettuce with Hydroponic Solutions in Recirculating NFTContenido principal del artículo
El objetivo del estudio fue evaluar el desempeño morfológico de plantas de lechuga cultivadas con tres soluciones hidropónicas en un sistema de película nutritiva recirculante, identificando la formulación más eficiente en condiciones de invernadero. Se utilizaron plantas de dos variedades de lechuga y se aplicaron tres soluciones nutritivas. Se midieron la altura de planta, número de hojas, diámetro, peso fresco y peso seco. El análisis estadístico permitió comparar los tratamientos e identificar diferencias significativas. Los resultados evidenciaron que la solución experimental mostró los valores más altos en la mayoría de las variables con diferencias significativas (p < 0.05). En la variedad Boston Blanca, la altura promedio alcanzó 27.8 centímetros, superior a los 24,3 centímetros obtenidos con la solución La Molina. El número de hojas llegó a 19.6 unidades, en contraste con 16,2 unidades en la solución Hidropónika. El diámetro de planta registró 31,4 centímetros, superando los 27,9 centímetros de las otras formulaciones. El peso fresco alcanzó 221,5 gramos, frente a 188,7 gramos de La Molina y 176,4 gramos de Hidropónika. El peso seco alcanzó 12,4 gramos, significativamente mayor que los 9,1 gramos logrados con las soluciones comparativas. Estos resultados confirman que la solución experimental favorece el crecimiento morfológico de manera consistente. En conclusión, la solución experimental optimiza el desarrollo de las plantas de lechuga en el sistema de película nutritiva recirculante, demostrando el mejor rendimiento en todas las variables analizadas. Su eficacia la posiciona como una alternativa recomendada para mejorar la producción hidropónica en regiones altoandinas con limitaciones climáticas.
The objective of the study was to evaluate the morphological performance of lettuce plants grown with three hydroponic solutions in a recirculating nutrient film system, identifying the most efficient formulation under greenhouse conditions. Plants from two lettuce varieties were used, and three nutrient solutions were applied. Plant height, number of leaves, diameter, fresh weight, and dry weight were measured. Statistical analysis enabled comparison among treatments and identification of significant differences. The results showed that the experimental solution exhibited the highest values in most variables, with significant differences (p < 0.05). In the Boston Blanca variety, average height reached 27.8 centimeters, higher than the 24.3 centimeters obtained with the La Molina solution. The number of leaves reached 19.6 units, in contrast to 16.2 units with the Hidroponika solution. Plant diameter reached 31.4 centimeters, surpassing the 27.9 centimeters recorded with the other formulations. Fresh weight reached 221.5 grams, compared to 188.7 grams for La Molina and 176.4 grams for Hidroponika. Dry weight reached 12.4 grams, significantly higher than the 9.1 grams achieved with the comparative solutions. These results confirm that the experimental solution consistently enhances morphological growth. In conclusion, the experimental solution optimizes the development of lettuce plants in the recirculating nutrient film system, demonstrating the best performance in all variables analyzed. Its effectiveness positions it as a recommended alternative to improve hydroponic production in high-Andean regions with climatic limitations.
Descargas
Detalles del artículo
Resh H. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower: CRC press; 2022. https://books.google.com.cu/books?hl=es&lr=&id=TZI8Zz9h47MC&oi=fnd&pg=PP1&ots=znlV-n8YAm&sig=75_thL8O6uVACwt09SA_47F5jwc&redir_esc=y#v=onepage&q&f=false.
Kumar K, Kumari K, Acharya S, Tsewang T, Mishra A, Verma A, et al. Hydroponic vs. soil cultivation of lettuce and spinach: A study in a polycarbonate greenhouse at high altitudes in the Trans-Himalayan region. Journal of Applied Horticulture. 2023;25(2):199-205. https://doi.org/10.37855/jah.2023.v25i02.35.
Ahmed N, Zhang B, Deng L, Bozdar B, Li J, Chachar S, et al. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation—a review. Frontiers in Plant Science. 2024;15:1357153. https://doi.org/10.3389/fpls.2024.1357153.
Lombardo S, Mauromicale G. Herbaceous field crops’ cultivation. Agronomy. 2021;11(4):742. https://doi.org/10.3390/agronomy11040742.
Jones J. Hydroponics: a practical guide for the soilless grower: CRC press; 2016. https://books.google.com.cu/books?hl=es&lr=&id=78POAWOmOLUC&oi=fnd&pg=PR11&ots=poq0Rfqyyd&sig=gaLdnYI6js-Sf8hcw8TJor3YPEA&redir_esc=y#v=onepage&q&f=false.
Sonneveld C, Voogt W. Plant nutrition in future greenhouse production. Plant nutrition of greenhouse crops: Springer; 2009. 393-403. https://doi.org/10.1007/978-90-481-2532-6_17.
Thapa U, Nandi S, Rai R, Upadhyay A. Effect of nitrogen levels and harvest timing on growth, yield and quality of lettuce under floating hydroponic system. Journal of Plant Nutrition. 2022;45(17):2563-77. https://doi.org/10.1080/01904167.2022.2064299.
Nicoletto C, Santagata S, Zanin G, Sambo P. Effect of the anaerobic digestion residues use on lettuce yield and quality. Scientia horticulturae. 2014;180:207-13. https://doi.org/10.1016/j.scienta.2014.10.028.
Mohammed S, Sookoo R. Nutrient film technique for commercial production. Agricultural Science Research Journal. 2016;6(11):269-74. https://www.researchgate.net/profile/Stephanie-Mohammed/publication/309866285_Nutrient_Film_Technique_for_Commercial_Production/links/5892061aaca272f9a558491f/Nutrient-Film-Technique-for-Commercial-Production.pdf
Silva L, Valdés D, Escalante E, Gasca E. Dynamic root floating technique: An option to reduce electric power consumption in aquaponic systems. Journal of cleaner production. 2018;183:132-42. https://doi.org/10.1016/j.jclepro.2018.02.086.
Monteiro A, Azevedo M, De Azevedo C, Fernandes J, Da Silva C, Silva Y. Growth of hydroponic lettuce with optimized mineral and organomineral nutrient solutions. Revista Brasileira de Engenharia Agrícola e Ambiental. 2017;21:191-6. https://doi.org/10.1590/1807-1929/agriambi.v21n3p191-196
Herrera R, Martínez J, Botello E, Sámano V, Martínez C, Moreno C. Smart hydroponic cultivation system for lettuce (Lactuca sativa L.) growth under different nutrient solution concentrations in a controlled environment. Applied System Innovation. 2025;8(4):110. https://doi.org/10.3390/asi8040110.
Qadeer A, Butt S, Asam H, Mehmood T, Nawaz M, Haidree S. Hydroponics as an innovative technique for lettuce production in greenhouse environment. Applied Biology. 2020;9(1):20-6. http://dx.doi.org/10.19045/bspab.2020.90130.
Tavares Í, De Assis F, Pereira C, De Lima M, Costa T. Foliar application of biofertilizer in semi-hydroponic lettuce fertigated with saline nutrient solution. Comunicata Scientiae. 2020;11. https://doi.org/10.14295/cs.v11i0.3115.
Ahmed H, Yu T, Qi Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany. 2020;130:75-89. https://doi.org/10.1016/j.sajb.2019.12.018.