Perfil químico y capacidad antioxidantes de hierbas aromáticas del sur de Chile con fines medicinales
Chemical profile and antioxidant capacity of aromatic herbs from southern Chile for medicinal purposesContenido principal del artículo
Al pasar de los años existe una creciente preocupación sobre la prevención de enfermedades crónicas y el envejecimiento, lo que ha llevado a los consumidores a interesarse y conocer más sobre el tipo de alimentación y las propiedades que presentan las hierbas aromáticas ancestrales para ser utilizadas como infusiones debido a los beneficios para la salud, o para dar sabor, color y aroma a los alimentos. Del mismo modo, también se han utilizado para la conservación de alimentos y bebidas principalmente debido a los compuestos antioxidantes que poseen. El objetivo de este estudio fue evaluar la capacidad antioxidante, principios activos (ácido cafeico y ácido rosmarinico) y Análisis proximal de ocho hierbas aromáticas liofilizadas del sur de chile: hierbabuena, menta, romero, lavanda, melisa, malvarrosa, tomillo y caléndula. La capacidad antioxidante se realizó mediante el método ORAC Este método es un ensayo que mide la capacidad de un compuesto para atrapar el radical peróxilo, mediante un mecanismo de transferencia de un átomo de hidrógeno HAT. Los principios activos por cromatografía líquida de alta eficiencia con detector de arreglo de diodos HPLC-DAD y los análisis proximales (proteínas, grasa, carbohidratos, cenizas y energía) en base a los métodos descritos por la AOAC (Association of Offical Analytical Chemistry). Los resultados obtenidos demuestran que la menta presenta mayor capacidad antioxidante en comparación con el resto de hierbas analizadas (71.542,90 ?moles ET/100g), seguido por malvarrosa y por tomillo. En cuanto a principios activos, la hierbabuena fue la que presento mayor cantidad de ambos compuestos (8 mg/g p.s. de ácido cafeico y 33 mg/g p.s. de ácido rosmarinico), seguido por lavanda para ácido cafeico y por tomillo para acido rosmarinico. En relación a análisis proximal, los resultados para proteína variaron entre 6,62 y 20,78 g/100g, para lavanda y hierba buena respectivamente. Se puede concluir que las hierbas aromáticas del sur de Chile han arrojado altos valores para capacidad antioxidante y principios activos, lo que aporta a potenciales usos y beneficios en la salud humana.
Over the years, there is a growing concern about the prevention of chronic diseases and aging, which has led consumers to become interested and learn more about the type of food and the properties of ancestral aromatic herbs to be used as infusions due to their health benefits, or to give flavor, color and aroma to food. Similarly, they have also been used for food and beverage preservation mainly due to the antioxidant compounds they possess. The objective of this study was to evaluate the antioxidant capacity, active principles (caffeic acid and rosmarinic acid) and proximate analysis of eight freeze-dried aromatic herbs from southern Chile: peppermint, mint, rosemary, lavender, lemon balm, hollyhock, thyme and marigold. The antioxidant capacity was performed using the ORAC method. This method is an assay that measures the capacity of a compound to trap the peroxyl radical, by means of a HAT hydrogen atom transfer mechanism. The active principles by high performance liquid chromatography with diode array detector HPLC-DAD and proximate analysis (protein, fat, carbohydrate, ash and energy) based on the methods described by the AOAC (Association of Offical Analytical Chemistry). The results obtained show that mint has the highest antioxidant capacity compared to the other herbs analyzed (71,542.90 ?moles ET/100g), followed by hollyhock and thyme. In terms of active principles, peppermint had the highest amount of both compounds (8 mg/g p.s. of caffeic acid and 33 mg/g p.s. of rosmarinic acid), followed by lavender for caffeic acid and by thyme for rosmarinic acid. In relation to proximate analysis, the results for protein varied between 6.62 and 20.78 g/100g, for lavender and hierba buena respectively. It can be concluded that aromatic herbs from southern Chile have high values for antioxidant capacity and active principles, which contributes to potential uses and benefits in human health.
Descargas
Detalles del artículo
Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem [Internet]. 2015;183:235–58. Available from: https://www.sciencedirect.com/science/article/pii/S0308814615004021
Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci [Internet]. 2014 [cited 2022 Aug 8];15(10):19183–202. Available from: https://pubmed.ncbi.nlm.nih.gov/25340982/
Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust [Internet]. 2006 [cited 2022 Aug 8];185(S4):S1–24. Available from: https://pubmed.ncbi.nlm.nih.gov/17022438/
Yashin A, Yashin Y, Xia X, Nemzer B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants (Basel) [Internet]. 2017 [cited 2022 Aug 8];6(3):70. Available from: http://dx.doi.org/10.3390/antiox6030070
Wang H. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem [Internet]. 2004;87(2):307–11. Available from: https://www.sciencedirect.com/science/article/pii/S030881460400072X
Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod [Internet]. 2011;74(3):496–511. Available from: http://dx.doi.org/10.1021/np100550t
Petersen M, Simmonds MSJ. Rosmarinic acid. Phytochemistry [Internet]. 2003;62(2):121–5. Available from: https://www.sciencedirect.com/science/article/pii/S0031942202005137
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, et al. Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci Technol [Internet]. 2021;117:182–93. Available from: https://www.sciencedirect.com/science/article/pii/S0924224421002077
Rampart M, Beetens JR, Bult H, Herman AG, Parnham MJ, Winkelmann J. Complement-dependent stimulation of prostacyclin biosynthesis: inhibition by rosmarinic acid. Biochem Pharmacol [Internet]. 1986 [cited 2022 Aug 3];35(8):1397–400. Available from: https://pubmed.ncbi.nlm.nih.gov/3516156/
Kassa T, Whalin JG, Richards MP, Alayash AI. Caffeic acid: an antioxidant with novel antisickling properties. FEBS Open Bio [Internet]. 2021 [cited 2022 Aug 9];11(12):3293–303. Available from: https://pubmed.ncbi.nlm.nih.gov/34510823/
Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol [Internet]. 2019 [cited 2022 Aug 2];9:541. Available from: https://pubmed.ncbi.nlm.nih.gov/31293975/
Spagnol CM, Assis RP, Brunetti IL, Isaac VLB, Salgado HRN, Corrêa MA. In vitro methods to determine the antioxidant activity of caffeic acid. Spectrochim Acta A Mol Biomol Spectrosc [Internet]. 2019;219:358–66. Available from: https://www.sciencedirect.com/science/article/pii/S1386142519304007
Akbarirad H, Ardabili AG, Kazemeini SM, Khaneghah A. An overview on some of important sources of natural antioxidants. 2016 [cited 2022 Aug 4]; Available from: https://www.semanticscholar.org/paper/246b7d51249078532ab9d7d5e0fa548821d9a2bb
Potter JD, Steinmetz K. Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci Publ [Internet]. 1996 [cited 2022 Aug 1];(139):61–90. Available from: https://pubmed.ncbi.nlm.nih.gov/8923020/
Ding R-B, Tian K, Huang L-L, He C-W, Jiang Y, Wang Y-T, et al. Herbal medicines for the prevention of alcoholic liver disease: a review. J Ethnopharmacol [Internet]. 2012 [cited 2022 Aug 1];144(3):457–65. Available from: https://pubmed.ncbi.nlm.nih.gov/23058988/
Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv [Internet]. 2015 [cited 2022 Aug 9];33(8):1582–614. Available from: https://pubmed.ncbi.nlm.nih.gov/26281720/
Balentine DA, Albano MC, Nair MG. Role of medicinal plants, herbs, and spices in protecting human health. Nutr Rev [Internet]. 1999 [cited 2022 Aug 1];57(9 Pt 2):S41-5. Available from: https://pubmed.ncbi.nlm.nih.gov/10568350/
Farzaneh V, Carvalho IS. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind Crops Prod [Internet]. 2015;65:247–58. Available from: https://www.sciencedirect.com/science/article/pii/S092666901400675X
Bermúdez A, Oliveira-Miranda MA, Velázquez D. La Investigación etnobotánica sobre plantas medicinales: Una revisión de sus objetivos y enfoques actuales. Interciencia [Internet]. 2005 [cited 2022 Aug 7];30(8):453–9. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442005000800005
Biblioteca del Congreso Nacional. Biblioteca del Congreso Nacional [Internet]. www.bcn.cl/leychile. [cited 2022 Aug 1]. Available from: https://www.bcn.cl/leychile/navegar?idNorma=1026879
Biblioteca del Congreso Nacional. Biblioteca del Congreso Nacional [Internet]. www.bcn.cl/leychile. [cited 2022 Aug 1]. Available from: https://www.bcn.cl/leychile/navegar?idNorma=1005970
Bouyahya A, Abrini J, Et-Touys A, Bakri Y, Dakka N. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. Eur J Integr Med [Internet]. 2017;13:9–25. Available from: https://www.sciencedirect.com/science/article/pii/S1876382017301130
Labiad H, El-Tahir A, Ghanmi M, Satrani B, Aljaiyash A, Chaouch A, et al. Ethnopharmacological survey of aromatic and medicinal plants of the pharmacopoeia of northern Morocco. Ethnobot res appl [Internet]. 2020 [cited 2022 Aug 9];19:1–16. Available from: https://ethnobotanyjournal.org/index.php/era/article/view/1413
Salhi N, Bouyahya A, Fettach S, Zellou A, Cherrah Y. Ethnopharmacological study of medicinal plants used in the treatment of skin burns in occidental Morocco (area of Rabat). S Afr J Bot [Internet]. 2019;121:128–42. Available from: https://www.sciencedirect.com/science/article/pii/S0254629918319021
Bajaj S, Urooj A, Prabhasankar P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr Res Nutr Food Sci J [Internet]. 2016 [cited 2022 Aug 9];4(3):209–16. Available from: https://www.foodandnutritionjournal.org/volume4number3/antioxidative-properties-of-mint-mentha-spicata-l-and-its-application-in-biscuits/
World Health Organization. Programme on Traditional Medicine. Estrategi?a de la OMS sobre medicina tradicional 2002-2005. Organizacio?n Mundial de la Salud; 2002.
WHO Expert Committee on the Selection of Essential Drugs, World Health Organization. The selection of essential drugs?: report of a WHO expert committee. Genève, Switzerland: World Health Organization; 1977.
El Menyiy N, Mrabti HN, El Omari N, Bakili AE, Bakrim S, Mekkaoui M, et al. Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. Evid Based Complement Alternat Med [Internet]. 2022 [cited 2022 Aug 9];2022:7990508. Available from: https://pubmed.ncbi.nlm.nih.gov/35463088/
Mena Palacios C, Silva López B, Medina A. Composición química y actividad biológica de los aceites esenciales de lamiaceas, asteraceas, vervenaceas: una revisión. Infoanalítica (Quito - Impresa) [Internet]. 2020 [cited 2022 Aug 9];48–69. Available from: https://doaj.org/article/e3ab356f611640959d45f04f9db09f18
Poswal FS, Russell G, Mackonochie M, MacLennan E, Adukwu EC, Rolfe V. Herbal teas and their health benefits: A scoping review. Plant Foods Hum Nutr [Internet]. 2019 [cited 2022 Aug 9];74(3):266–76. Available from: https://pubmed.ncbi.nlm.nih.gov/31243622/
Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med [Internet]. 1999 [cited 2022 Aug 9];27(11–12):1173–81. Available from: https://pubmed.ncbi.nlm.nih.gov/10641708/
Speisky H, López-Alarcón C, Gómez M, Fuentes J, Sandoval-Acuña C. First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. J Agric Food Chem [Internet]. 2012 [cited 2022 Aug 9];60(36):8851–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22512599/
Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem [Internet]. 2001;49(11):5165–70. Available from: http://dx.doi.org/10.1021/jf010697n
Dragland S, Senoo H, Wake K, Holte K, Blomhoff R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J Nutr [Internet]. 2003 [cited 2022 Aug 9];133(5):1286–90. Available from: https://pubmed.ncbi.nlm.nih.gov/12730411/
Galovi?ová L, Borotová P, Valková V, Vukovic NL, Vukic M, Štefániková J, et al. Thymus vulgaris essential oil and its biological activity. Plants [Internet]. 2021 [cited 2022 Aug 9];10(9):1959. Available from: http://dx.doi.org/10.3390/plants10091959
Lv J, Huang H, Yu L, Whent M, Niu Y, Shi H, et al. Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem [Internet]. 2012;132(3):1442–50. Available from: https://www.sciencedirect.com/science/article/pii/S0308814611017390
Larson RA. The antioxidants of higher plants. Phytochemistry [Internet]. 1988;27(4):969–78. Available from: https://www.sciencedirect.com/science/article/pii/0031942288802541
Pereira E, Barros L, Antonio AL, Cabo Verde S, Santos-Buelga C, Ferreira ICFR. Infusions from Thymus vulgaris L. treated at different gamma radiation doses: Effects on antioxidant activity and phenolic composition. Lebenson Wiss Technol [Internet]. 2016;74:34–9. Available from: https://www.sciencedirect.com/science/article/pii/S0023643816304303
Mekonnen M, Manahlie B. Identification of economically important diseases and insect pests of prioritized aromatic and medicinal plants in Ethiopia. Australian Journal of Crop Science. 2017;11(07):768–76. https://www.semanticscholar.org/paper/Identification-of-economically-important-diseases-MekonnenManahlie/e43007efe0d2574d29063040d5f363141ade918c
Bouyahya A, Abrini J, Et-Touys A, Bakri Y, Dakka N. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. Eur J Integr Med [Internet]. 2017;13:9–25. Available from: http://dx.doi.org/10.1016/j.eujim.2017.06.004
Labiad H, El-Tahir A, Ghanmi M, Satrani B, Aljaiyash A, Chaouch A, et al. Ethnopharmacological survey of aromatic and medicinal plants of the pharmacopoeia of northern Morocco. Ethnobot res appl [Internet]. 2020;19. Available from: http://dx.doi.org/10.32859/era.19.45.1-16
Bajaj S, Urooj A, Prabhasankar P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr Res Nutr Food Sci J [Internet]. 2016;4(3):209–16. Available from: http://dx.doi.org/10.12944/crnfsj.4.3.07
Bellassoued K, Ben Hsouna A, Athmouni K, van Pelt J, Makni Ayadi F, Rebai T, et al. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats. Lipids Health Dis [Internet]. 2018;17(1):9. Available from: http://dx.doi.org/10.1186/s12944-017-0645-9
Atsumi T, Tonosaki K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res [Internet]. 2007;150(1):89–96. Available from: http://dx.doi.org/10.1016/j.psychres.2005.12.012
Hussain AI, Anwar F, Chatha SAS, Jabbar A, Mahboob S, Nigam PS. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz J Microbiol [Internet]. 2010;41(4):1070–8. Available from: http://dx.doi.org/10.1590/s1517-83822010000400027
Prusinowska R, ?migielski KB. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. Herb Pol [Internet]. 2014;60(2):56–66. Available from: http://dx.doi.org/10.2478/hepo-2014-0010
Miraj S, Rafieian-Kopaei, Kiani S. Melissa officinalis L: A review study with an antioxidant prospective. J Evid Based Complementary Altern Med [Internet]. 2017;22(3):385–94. Available from: http://dx.doi.org/10.1177/2156587216663433
Talbourdet S, Sadick NS, Lazou K, Bonnet-Duquennoy M, Kurfurst R, Neveu M, et al. Modulation of gene expression as a new skin anti-aging strategy. J Drugs Dermatol. 2007;6(6 Suppl):s25-33.
Butt AS, Nisar N, Mughal TA, Ghani N, Altaf I. Anti-oxidative and anti-proliferative activities of extracted phytochemical compound thymoquinone. J Pak Med Assoc [Internet]. 2019;69(10):1479–85. Available from: http://dx.doi.org/10.5455/jpma.302643156
Montero Recalde M, Mira JC, Avilés Esquivel D, Pazmiño Miranda P, Erazo Gutiérrez R. Eficacia antimicrobiana del aceite esencial de tomillo (Thymus vulgaris) sobre una cepa de Staphylococcus aureus. Rev Investig Vet Peru [Internet]. 2018;29(2):588–93. Available from: http://dx.doi.org/10.15381/rivep.v29i2.14520
Fonseca YM, Catini CD, Vicentini FTMC, Nomizo A, Gerlach RF, Fonseca MJV. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol [Internet]. 2010;127(3):596–601. Available from: http://dx.doi.org/10.1016/j.jep.2009.12.019
BP Muley, SS Khadabadi, NB Banarase, HA Sawarkar. The Antioxidant Activity of the Leaves and Petals of Calendula officinalis Linn. Research J. Pharm. and Tech. 2(1): Jan.-Mar. 2009; Page 173-175. Available on: https://rjptonline.org/AbstractView.aspx?PID=2009-2-1-86