Rendimiento de maíz bajo un diseño factorial con aplicación foliar de bioestimulante y ácido húmico
Corn yield under a factorial design with foliar application of biostimulant and humic acidContenido principal del artículo
La baja fertilidad del suelo y la escasez de agua limitaron la producción de maíz, lo que requirió el empleo de estrategias sostenibles. En este contexto, los bioestimulantes y ácidos húmicos optimizaron la absorción de nutrientes y aumentaron el rendimiento del cultivo. Objetivo: El objetivo de este trabajo fue evaluar el efecto de la aplicación por vía foliar de diferentes fuentes de bioestimulantes y acido húmico sobre el rendimiento y las característica morfológicas y fenológicas del cultivo de maíz amarillo duro hibrido en la zona media del valle de Ica. Materiales y métodos: Se utilizó un enfoque cuantitativo con un diseño de bloque completamente randomizado con arreglo factorial 3B x 3H más un testigo (sin aplicación), formando 10 tratamientos con 5 repeticiones haciendo un total de 50 unidades experimentales, se evaluaron variables como floración, altura de planta, diámetro de tallo, características de la mazorca y rendimiento de grano seco. Resultados: Los resultados mostraron un coeficiente de variabilidad que fluctúa entre 1.43% a 9.76%, asegurando la confiabilidad de los datos. Se evidenciaron diferencias estadísticas en el rendimiento de grano seco, donde el ácido húmico a 4 Lt/ha alcanzó 9,714 Kg/ha, mientras que el bioestimulante en dosis de 0.75 y 1.0 Lt/ha obtuvo 9,457 y 9,257 Kg/ha, respectivamente. Las combinaciones más productivas fueron Atonik 0.375 Lt/ha + Humita 4 Lt/ha con 10,423 Kg/ha, seguido de Atonik 0.75 Lt/ha + Humita 2 Lt/ha con 9,956 Kg/ha. Conclusiones: El uso de ácido húmico y bioestimulante influyó significativamente en el rendimiento del maíz, destacando la combinación Atonik 0.375 Lt/ha + Humita 4 Lt/ha con 10,423 Kg/ha. Estos resultados confirmaron la efectividad de dichos tratamientos para mejorar la productividad del cultivo.
Low soil fertility and water scarcity limited maize production, requiring the use of sustainable strategies. In this context, biostimulants and humic acids optimized nutrient uptake and increased crop yield. Objective: The objective of this work was to evaluate the effect of foliar application of different sources of biostimulants and humic acid on yield and morphological and phenological characteristics of hybrid hard yellow corn in the middle zone of the Ica valley. Materials and methods: A quantitative approach was used with a completely randomized block design with a 3B x 3H factorial arrangement plus a control (without application), forming 10 treatments with 5 replications for a total of 50 experimental units, variables such as flowering, plant height, stalk diameter, ear characteristics and dry grain yield were evaluated. Results: The results showed a coefficient of variability that fluctuated between 1.43% and 9.76%, assuring the reliability of the data. Statistical differences were evidenced in dry grain yield, where humic acid at 4 Lt/ha reached 9,714 kg/ha, while the biostimulant at doses of 0.75 and 1.0 Lt/ha obtained 9,457 and 9,257 kg/ha, respectively. The most productive combinations were Atonik 0.375 Lt/ha + Humita 4 Lt/ha with 10,423 Kg/ha, followed by Atonik 0.75 Lt/ha + Humita 2 Lt/ha with 9,956 Kg/ha. Conclusions: The use of humic acid and biostimulant significantly influenced corn yield, highlighting the combination Atonik 0.375 Lt/ha + Humita 4 Lt/ha with 10,423 Kg/ha. These results confirmed the effectiveness of these treatments to improve crop productivity.
Descargas
Detalles del artículo
Hong S, Go J, Kim JH, Jo J, Kim J, Park J, et al. Una colección básica enriquecida con variedades locales de maíz coreano (Zea mays L.) que tienen caracteres morfológicos relacionados con la textura del grano y fenotipos novedosos de múltiples capas de aleurona. J Agric Food Res. 2024;18:101395. https://www.sciencedirect.com/science/article/pii/S2666154324004320
Al-Sayed W, El-Shazly H, El-Nahas AI, Omran A. Cytogenetic impact of gamma radiation and its effects on growth, yield and drought tolerance of maize (Zea mays L.). BMC Plant Biol. 2025;25(1).
Mishra S, Gopinath I, Muthusamy V, Zunjare R, Chand G, Venkatesh K, et al. Unraveling the interactive effect of opaque2 and waxy1 genes on kernel nutritional qualities and physical properties in maize (Zea mays L.). Sci Rep. 2025;15(1).
Song Z, Gao T, Lu H, Zhang Q, Liu J, Kang T, et al. Electro-oxidation mechanism profiling of humic acid by typical reactive substances. Sep Purif Technol. 2025 ;362:131898. https://www.sciencedirect.com/science/article/pii/S1383586625004952
García-Mendoza P, Saldaña C, Pérez-Almeida I, Prieto-Rosales G, Medina-Castro DE, Taramona-Ruíz LA, et al. Genetic diversity and population structure of maize landraces from Huancavelica and Cajamarca provinces of Peru using SNP markers. Plant Genet Resour. 2025;1-9. https://www.cambridge.org/core/journals/plant-genetic-resources/article/genetic-diversity-and-population-structure-of-maize-landraces-from-huancavelica-and-cajamarca-provinces-of-peru-using-snp-markers/4388461363F881285C6823BAC68862B6
Radkowski A, Radkowska I, Bocianowski J, Sladkovska T, Wolski K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy. 2020;10(11):1656. https://www.mdpi.com/2073-4395/10/11/1656
Makonya G, Bryla D, Hardigan M, Hoashi-Erhardt W, DeVetter L. Biostimulants with glycine betaine or kelp extract alleviate heat stress in red raspberry (Rubus idaeus). Sci Rep. 2025;15(1):2251. https://www.nature.com/articles/s41598-024-83955-7
Gajula P, Dhillon J, Sharma R, Bryant C, Bheemanahalli R, Reed V, et al. Evaluating the impact of biostimulants at variable nitrogen rates in corn production. Eur J Agron. 2025;167:127554. https://www.sciencedirect.com/science/article/pii/S1161030125000504
El-Hefny M, Hussien M. Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment. Sci Rep. 2025;15(1):774. https://www.nature.com/articles/s41598-024-82127-x
Radkowski A, Radkowska I, Khachatryan K, Kozdęba M, Bujak H, Wolski K. The impact of an amino acid-humus preparation on lawn boning value. Sci Rep. 2025;15(1):6607. https://www.nature.com/articles/s41598-025-90862-y
Hartina, Monkham T, Vityakon P, Sukitprapanon T. Coapplication of humic acid and gypsum affects soil chemical properties, rice yield, and phosphorus use efficiency in acidic paddy soils. Sci Rep. 2025;15(1):4350. https://www.nature.com/articles/s41598-025-89132-8
Singh R, Lessard P, Michael Raab R, Singh V. Effect of phytase corn addition on ethanol yield and distillers’ dried grains with soluble profile in corn dry-grind process. Cereal Chem. 2023;100(2):284-8. https://onlinelibrary.wiley.com/doi/abs/10.1002/cche.10610
Rohima I, Djali M, Cahyana Y, Hamdani J, Lani M, Triani R. Physicochemical and functional properties of modified potato starch from different altitudes: a study of the medians cultivar. Discov Food. 2025;5(1):32. https://doi.org/10.1007/s44187-025-00283-z
Mercer K, Campbell L, Luo J. Effect of water availability and genetic diversity on flowering phenology, synchrony, and reproductive investment in maize. MAYDICA. 2014;59(3):283-9.
S. Hamad H, M. Abdulkareem B, A. Abdulhamed Z, M. Abood N. GENOTYPIC AND PHENOTYPIC VARIANCE, CORRELATION, AND PATH COEFFICIENT ANALYSIS IN MAIZE. ANBAR J Agric Sci. 2024;22(2):1214-27. https://ajas.uoanbar.edu.iq/article_184519.html
Gajula P, Dhillon J, Sharma R, Bryant C, Bheemanahalli R, Reed V, et al. Evaluating the impact of biostimulants at variable nitrogen rates in corn production. Eur J Agron. 2025;167:127554. https://www.sciencedirect.com/science/article/pii/S1161030125000504
Oliveira F dos S de, Pelloso M, Filho P, Scapim C. Optimizing nitrogen fertilization with Azospirillum brasilense and biostimulants for green corn. Acta Sci Agron. 2025;47(1):e69527-e69527. https://periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/69527
Fan M, Chen P, Zhang C, Liang M, Xie G, Zhao L, et al. Effects of combined application of slow-release nitrogen fertilizer and urea on nitrogen uptake, utilization and yield of maize under two tillage methods. Sci Rep. 2025;15(1):5007. https://www.nature.com/articles/s41598-025-87480-z
Valdés-Rodríguez O, Salas-Martínez F, Palacios-Wassenaar O, Marquez A. Assessment of Corn Grain Production Under Drought Conditions in Eastern Mexico Through the North American Drought Monitor. Atmosphere. 2025;16(2):193. https://www.mdpi.com/2073-4433/16/2/193
Wojciechowicz-Żytko E, Kunicki E, Nawrocki J. Influence of Biostimulants and Microbiological Preparations on the Yield and the Occurrence of Diseases and the European Corn Borer (Ostrinia nubilalis Hbn, Lepidoptera, Crambidae) on Sweet Corn (Zea mays L. Var. saccharata). Agriculture. 2024;14(10):1754. https://www.mdpi.com/2077-0472/14/10/1754
Nurbek K, Elmurod U. Formation of the corn root system depending on the norms of mineral fertilizers and biostimulants. Bulg J Agric Sci. 2024;30(3):482-5.
Luzardo-Ocampo I, Chuck-Hernández C, Preciado-Ortiz RE, Serna-Saldívar SRO, Antunes-Ricardo M, Escalante-Aburto A. Parámetros de calidad y propiedades nutricionales de híbridos de maíz oleaginoso (Zea mays var. ' Everta’) sometidos a diferentes tratamientos térmicos. Food Chem. 2025;463:141307. https://www.sciencedirect.com/science/article/pii/S0308814624029571
Oruoski P, Aita C, Pujol SB, Bazzo HLS. Immediate and residual effect of tobacco powder compost and of NPK on N2O emissions and on N use in a wheat/corn crop succession. Rev Bras Ciênc Solo. 2025;49. https://www.rbcsjournal.org/article/immediate-and-residual-effect-of-tobacco-powder-compost-and-of-npk-on-n2o-emissions-and-on-n-use-in-a-wheat-corn-crop-succession/
Shahrajabian M, Sun W. The Importance of Salicylic Acid, Humic Acid and Fulvic Acid on Crop Production. http://www.eurekaselect.com 2025. https://www.eurekaselect.com/article/130846
Blanco-Valdes Y, Cartaya-Rubio O, Espina-Nápoles M. Efecto de diferentes formas de aplicación del Quitomax® en el crecimiento del maíz. Agron Mesoam. 2022;47246-47246. https://revistas.ucr.ac.cr/index.php/agromeso/article/view/47246
Liang Q, Chang H, Chen H, Wu Q, Qin Y, Wang Z, et al. The agronomic mechanism of root lodging resistance and yield stability for sweet corn in response to planting density and nitrogen rates at different planting dates. Front Plant Sci. 2025;16. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1481033/full
Capo L, Sopegno A, Reyneri A, Ujvári G, Agnolucci M, Blandino M. Agronomic strategies to enhance the early vigor and yield of maize part II: the role of seed applied biostimulant, hybrid, and starter fertilization on crop performance. Front Plant Sci. 2023;14. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1240313/full
Sadeghi M, Samdeliri M, Eftekhari A, Ahmadi T, Mousavi Mirkalaei S. The role of the application of nanosilver and humic acid on the physiological and yield traits of corn (Zea Mays L.) under deficit irrigation conditions. J Plant Nutr. 2025;48(6):1043-54. https://doi.org/10.1080/01904167.2024.2416089
Pasa E, Ferreira H, Ferreira J, Vargas V, da Silva Meireles D, da Silveira Pasa M, et al. Calcium Ammonium Nitrate Fertilization Reduces Ammonia Volatilization and Increases Yield in Corn-ryegrass Succession in Southern Brazil. J Soil Sci Plant Nutr 2025. https://doi.org/10.1007/s42729-025-02314-1
Li Z, Shao Y, He W, Luo Z, Huo W, Ye R, et al. Insight into the co-hydrothermal humification of corn stalk and sewage sludge for enhanced nitrogen-rich humic acid production. Front Environ Sci Eng. 2024;18(12):153. https://doi.org/10.1007/s11783-024-1913-3
Zhang G, Li B, Yang Y, Zhang Z, Cheng D, Wang F, et al. Biodegradación de ácidos húmicos por Streptomyces rochei para promover el crecimiento y rendimiento del maíz. Microbiol Res. 2024;286:127826. https://www.sciencedirect.com/science/article/pii/S0944501324002271
Al-Hadethi A. YIELD AND ITS COMPONENTS OF CORN AT SALINE SODIC SOIL WASHED WITH ENRICHED WATER BY A COMBINATIONS OF PHOSPHOGYPSUM AND HUMIC ACIDS. IRAQI J Agric Sci. 2024;55(4):1475-85. https://jcoagri.uobaghdad.edu.iq/index.php/intro/article/view/2034
Gajula P, Dhillon J, Sharma R, Bryant C, Bheemanahalli R, Reed V, et al. Evaluating the impact of biostimulants at variable nitrogen rates in corn production. Eur J Agron. 2025;167:127554. https://www.sciencedirect.com/science/article/pii/S1161030125000504
Atero-Calvo S, Izquierdo-Ramos M, García-Huertas C, Rodríguez-Alcántara M, Navarro-Morillo I, Navarro-León E. An Evaluation of the Effectivity of the Green Leaves Biostimulant on Lettuce Growth, Nutritional Quality, and Mineral Element Efficiencies under Optimal Growth Conditions. Plants. 2024;13(7):917. https://www.mdpi.com/2223-7747/13/7/917
García-Sánchez F, Simón-Grao S, Navarro-Pérez V, Alfosea-Simón M. Scientific Advances in Biostimulation Reported in the 5th Biostimulant World Congress. Horticulturae. 2022;8(7):665. https://www.mdpi.com/2311-7524/8/7/665
Shahrajabian MH, Sun W. The Importance of Salicylic Acid, Humic Acid and Fulvic Acid on Crop Production 2025. http://www.eurekaselect.com https://www.eurekaselect.com/article/130846