Efectos de la humedad del suelo, sistemas de labranza y fertilización nitrogenada sobre el arroz
Effects of soil moisture, tillage systems and nitrogen fertilization on riceContenido principal del artículo
La productividad del cultivo de arroz está fuertemente influenciada por las condiciones edáficas y las prácticas agronómicas aplicadas. El objetivo del estudio es evaluar el efecto de tres tipos de suelo (seco, medio húmedo y alto húmedo), dos sistemas de labranza (cero y convencional) y cuatro niveles de fertilización nitrogenada (0, 30, 60 y 100 kg N ha⁻¹) sobre el rendimiento del arroz de secano (Oryza sativa L.) en los Llanos de Coclé, Panamá. Metodología: Se realizó un estudio experimental de campo con enfoque cuantitativo, empleando un diseño factorial 3 × 2 × 4 en bloques completos al azar con cuatro repeticiones, utilizando la variedad IDIAP 145-05 durante tres años (2007-2009). Los parámetros evaluados incluyeron rendimiento de grano, absorción de nutrientes y propiedades físico-químicas del suelo. Los hallazgos indican que el rendimiento máximo (3,493 ± 156 kg/ha) se obtuvo en suelo alto húmedo con 100 kg N ha⁻¹ bajo labranza convencional. La respuesta cuadrática del rendimiento a la fertilización nitrogenada mostró incrementos significativos hasta 100 kg N ha⁻¹. Los sistemas de labranza mostraron efectos diferenciales según el tipo de suelo: cero labranza fue superior en suelo seco, mientras labranza convencional superó en suelos húmedos. Las conclusiones señalan que es recomendable una dosis de 100 kg N ha⁻¹ para maximizar rendimiento en suelos húmedos y 60 kg N ha⁻¹ para optimizar rentabilidad. La selección del sistema de labranza debe basarse en las condiciones de humedad del suelo para optimizar el uso de nutrientes y el rendimiento del cultivo.
Rice crop productivity is strongly influenced by soil conditions and agronomic practices. The objective of this study was to evaluate the effect of three soil types (dry, medium-humid, and high-humid), two tillage systems (zero and conventional), and four levels of nitrogen fertilization (0, 30, 60, and 100 kg N ha⁻¹) on the yield of upland rice (Oryza sativa L.) in the Llanos de Coclé, Panama. Methodology: A quantitative field experimental study was conducted using a 3 × 2 × 4 factorial design in randomized complete blocks with four replications, using the IDIAP 145-05 variety for three years (2007–2009). The parameters evaluated included grain yield, nutrient uptake, and soil physicochemical properties. The findings indicate that the maximum yield (3,493 ± 156 kg/ha) was obtained in moist upland soils with 100 kg N ha⁻¹ under conventional tillage. The quadratic yield response to nitrogen fertilization showed significant increases up to 100 kg N ha⁻¹. Tillage systems exhibited differential effects depending on soil type: zero tillage was superior in dry soils, while conventional tillage was superior in moist soils. The conclusions indicate that a dosage of 100 kg N ha⁻¹ is recommended to maximize yield in moist soils and 60 kg N ha⁻¹ to optimize profitability. Tillage system selection should be based on soil moisture conditions to optimize nutrient use and crop yield.
Descargas
Detalles del artículo
FAO. Rice for Food Security: Revisiting Its Production, Diversity, and Nutritional Contribution. Rome: Food and Agriculture Organization; 2023. https://www.fao.org/documents/card/en/c/cc3751en
FAOSTAT. Rice production in Latin America at critical crossroads. Rome: FAO; 2022. https://www.fao.org/faostat/en/#data/QCL
Garcia-Farias C, Martinez E, Batista L. Productivity decline in intensive rice production systems in Central America. Agric Sys. 2024;218:103-115. https://doi.org/10.1016/j.agsy.2024.103680
USDA. Panama Rice and Corn Outlook for MY 2022/23. Washington: Foreign Agricultural Service; 2023. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Annual_Panama%20City_Panama_PM2023-0008.pdf
Vargas J, Pérez M. Degradation of soils in Panama’s Dry Arc and its implications for agriculture. J Soil Water Conserv. 2023;78(2):145-158. Disponible en: https://doi.org/10.2489/jswc.2023.00045
Jaramillo SE. Pedones de campo y estaciones experimentales del IDIAP. Divisa: Boletín Técnico No 38; 1991. https://www.idiap.gob.pa/download/boletines-tecnicos/
Amézquita E, Rao IM, Hoyos P. Soil acidity effects on rice cultivation in tropical America. Plant Soil. 2002;241(2):267-276. https://doi.org/10.1023/A:1016125317730
Silva J, Ribeiro A. Climate change impact on rice productivity in Central America. Clim Change. 2023;177(4):89-104. https://doi.org/10.1007/s10584-023-03425-x
Tomita K, Villarreal J. Climate conditions in Coclé Plains and rice cultivation potential. ALFA J Agric Sci. 2021;3(9):45-52. https://doi.org/10.25133/alfa.v3i9.21.045
Brown S, Davis K. Soil moisture variability and crop performance in tropical upland rice. Field Crops Res. 2024;298:108-115. https://doi.org/10.1016/j.fcr.2024.109012
Singh R, Kumar P. Nitrogen fertilization effects on upland rice productivity in tropical soils. Nutr Cycling Agroecosys. 2023;125(3):287-301. https://doi.org/10.1007/s10705-023-10267-4
Chen W, Liu H. Factors influencing nitrogen use efficiency in rice cultivation. Plant Nutr Soil Sci. 2023;186(4):398-410. https://doi.org/10.1002/jpln.202300089
Fageria NK, Santos AB. Optimizing nitrogen fertilization for upland rice production in the humid tropics. J Plant Nutr. 2024;47(8):1234-1248. https://doi.org/10.1080/01904167.2024.2315678
Silva F, Cardoso L, Miranda P. Nitrogen fertilization strategies for improved rice yield in Brazilian Cerrado. Pesq Agrop Bras. 2020;55:e01234. https://doi.org/10.1590/S1678-3921.pab2020.v55.01234
Tanaka M, Diallo S, Ouédraogo A. Nitrogen fertilization strategies for upland rice in humid West African tropics. Afr J Agric Res. 2019;14(28):1204-1218. https://doi.org/10.5897/AJAR2019.14127
Johnson M, Williams P. Tillage systems impact on rice productivity and soil properties in Central America. Soil Tillage Res. 2024;240:105-118. https://doi.org/10.1016/j.still.2024.106089
García R, Morales L. Comparative effects of conventional and no-till systems on upland rice yield. Agron J. 2023;115(2):456-468. https://doi.org/10.1002/agj2.21234
Silva A, Costa M, Lopes R. Phosphorus availability and tillage effects in tropical rice systems. Soil Use Manage. 2015;31(3):412-425. https://doi.org/10.1111/sum.12195
Rodríguez C, Herrera A. Soil moisture management for optimal rice productivity in tropical conditions. Irrig Sci. 2024;42(1):89-102. https://doi.org/10.1007/s00271-023-00892-1
Thompson K, Anderson J. Climate variability and rice production sustainability in Latin America. Agric Water Manage. 2024;291:108-121. https://doi.org/10.1016/j.agwat.2024.108654
Cruz P, Mendez R. Progress in varietal improvement for increasing upland rice productivity in the tropics. Trop Plant Biol. 2024;17(2):234-248. https://doi.org/10.1007/s12042-024-09345-2
Morales D, Vargas F. Integrated crop management for enhanced rice productivity in Central America. Field Crops Res. 2024;305:109-122. https://doi.org/10.1016/j.fcr.2024.109456
Institute CIAT. Sustaining innovation in the Latin America and Caribbean rice sector. Cali: Centro Internacional de Agricultura Tropical; 2022. https://cgspace.cgiar.org/handle/10568/126789
Camargo I, Martínez L, Batista E, Him P, Quirós E, Name B. Evaluación de cultivares de arroz (Oryza sativa L.) bajo condiciones de secano y riego. Agronomía Mesoamericana. 2005;16(2):117-125. https://doi.org/10.15517/am.v16i2.5205