Mitigación del drenaje ácido mediante interacción agua-caliza en el pasivo ambiental mina escuela Pompería, Puno Perú
Mitigation of acid drainage through water-limestone interaction in the environmental passivation of the school mine Pompería, Puno PerúContenido principal del artículo
La mina escuela Pompería, ubicada en Puno, Perú, es considerada un pasivo ambiental por el Ministerio de Energía y Minas debido a operaciones mineras realizadas entre 1950 y 1970, que dejaron desmonteras, mineral y labores sin proceso de cierre. Actualmente, se observa un efluente de agua ácida que emerge desde el interior de la mina hacia la superficie, recorriendo 25 metros por una cuneta empedrada con roca caliza. El objetivo del estudio fue evaluar la mitigación del drenaje ácido mediante la interacción agua–caliza en dicho pasivo ambiental. La investigación tuvo un enfoque cuantitativo, de tipo no experimental y diseño descriptivo transversal. Se realizaron mediciones in situ utilizando el equipo Multiparámetro HANNA HI 9899 y el Espectrofotómetro de Emisión Atómica por Plasma Microondas 4210 MP-AES, aplicando digestión multiácida. Las muestras fueron analizadas en el Laboratorio de Monitoreo Ambiental de la Facultad de Ingeniería de Minas de la UNA Puno. Los resultados evidenciaron un incremento del pH de 6,36 a 10,75, indicando una transición de condiciones ácidas a alcalinas. En cuanto a metales, el mercurio aumentó de 4,33 a 6,67 ppm, mientras que el cadmio se redujo de 10,33 a 6,67 ppm, el plomo de 203,33 a 65,00 ppm y el cromo de 7,00 a 3,33 ppm. Se concluye que la interacción agua–caliza tiene un efecto positivo en la mitigación del drenaje ácido, aunque los valores de metales pesados aún superan los límites establecidos por los Estándares de Calidad Ambiental (ECA) para aguas categoría 3.
The Pompería School Mine, located in Puno, Peru, is classified as an environmental liability by the Ministry of Energy and Mines due to mining operations conducted between 1950 and 1970. These activities left behind waste rock dumps, ore, and underground workings without undergoing a formal mine closure process. Currently, an acidic water effluent emerges from the mine interior to the surface, flowing through a 25-meter limestone-lined channel. This study aimed to evaluate the mitigation process of acid drainage through water–limestone interaction at the Pompería School Mine environmental liability site. The research followed a quantitative approach, with a non-experimental, cross-sectional descriptive design. In situ measurements were conducted using the HANNA HI 9899 multiparameter device and the 4210 MP-AES Microwave Plasma Atomic Emission Spectrometer, applying a multi-acid digestion protocol. Water samples were analyzed at the Environmental Monitoring Laboratory of the Mining Engineering Faculty at UNA Puno. Results showed an increase in pH from 6.36 to 10.75, indicating a shift from acidic to alkaline conditions. Mercury concentrations rose from 4.33 to 6.67 ppm, while cadmium decreased from 10.33 to 6.67 ppm, lead from 203.33 to 65.00 ppm, and chromium from 7.00 to 3.33 ppm. It is concluded that the water–limestone interaction has a positive effect on acid drainage mitigation. However, heavy metal concentrations remain above the permissible limits established by the Environmental Quality Standards (ECA) for Category 3 water.
Descargas
Detalles del artículo
Wei M, Pan A, Ma R, Wang H. Migration characteristics and human health risk assessment of selenium and heavy metals in rhizosphere soil-crop system in high geological background area of southern Qinling Mountains: A case study of Shiquan County, Shaanxi, China. Ecotoxicol Environ Saf. 2025;294:118013. https://doi.org/10.1016/j.ecoenv.2025.118013
Zamora G, Meza R. Formación, prevención e innovación en el tratamiento de drenaje ácidos en operaciones mineras. Rev Medio Ambient Min y Minería. 2022;7(1):3–21. http://www.scielo.org.bo/scielo.php?pid=S2519-53522022000100001&script=sci_arttext
Bhandari A, Sangeeta. Distribution and assessment of heavy metals in sediments of Bilaspur, Central India: Implications on ecological risk and human health hazard. Environ Pollut Manag. 2025;2:182–95. https://doi.org/10.1016/j.epm.2025.07.001
Prajapati A, Tanwar D, Yadav S, Bajar S. Assessment of Heavy Metal Contamination and Seasonal Variability in Groundwater of Indian NCR: Geospatial and Statistical Approach. Clean Water. 2025;4:100107: https://doi.org/10.1016/j.clwat.2025.100107
Arumugam T, Kinattinkara S, Vellingiri K, C A. A GIS-based assessment of groundwater quality and public health risks of heavy metals in Kannur, Kerala. Clean Water. 2025;4:100113. https://doi.org/10.1016/j.clwat.2025.100113
Ng J, Ahmed O, Omar L, Jalloh M, Kwan Y, Musah A, et al. Mitigating water pollution by nitrogen fertilizers through amending ammonium sorption in an acid soil using Calciprill and sodium silicate. Desalin Water Treat. 2024;319:100489. https://doi.org/10.1016/j.dwt.2024.100489
Martínez E, Tobón J, Morales J. Coal acid mine drainage treatment using cement kiln dust. Dyna. 2014;81(186):87.
Hassani K, Zheng W, Shrestha S. Experimental study on mineral precipitation prediction and mitigation for geothermal fluids in Clarke Lake Field in British Columbia, Canada. Geothermics. 2025;133(July):103458. https://doi.org/10.1016/j.geothermics.2025.103458
Hammarstrom J, Sibrell P, Belkin H. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Appl Geochemistry. 2003;18(11):1705–21.
Guzmán F, Arranz J, Smoll L, Collahuazo L, Calderón E, Otero O, et al. Pasivos ambientales mineros: Manual para el inventario de minas abandonadas o paralizadas. Asoc Serv Geol Minería Iberoam [Internet]. 2020;52. Available from: https://asgmi.org/wp-content/uploads/2020/06/Manual-Inventario-PAM-y-Anexos.pdf
Marin E, Escobar F. Drenaje De Aguas Y Pasivos Ambientales En La Inactiva Mina. Rev Investig Alto Andin. 2014;16: 2306-8582 V.D: 2313-2957):41–8. https://dialnet.unirioja.es/servlet/articulo?codigo=5607227
Zamora G, Trujillo E. Planta De Tratamiento En Interior Mina De Las Aguas Ácidas De La Mina San José Oruro Bolivia. Prim Premio II Feria Nac Investig Cienc y Tecnol del Sist Univ Boliv. 2016;7. Available from: http://www.scielo.org.bo/scielo.php?pid=S2519-53522016000100001&script=sci_arttext
Márquez M, Osvaldo E. Optimización en el tratamiento de efluentes ácidos de una compañía minera y cumplimiento de límites máximos permisibles. SciELO. 2024;9(1):1–20. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522024000100002
El-Desoki W, Osman H, Moneeb H, Hamad G, Alharbi H, Alwutayd K, et al. Innovative low-fat cheese with selenium: Physiological benefits amidst heavy metal exposure. J Agric Food Res. 2025;22:102120. https://doi.org/10.1016/j.jafr.2025.102120
Trach Y, Melnychuk V, Trach R. Removal of cationic and anionic pollutants from water solutions using Ukrainian limestones: a comparative analysis. Desalin Water Treat. 2022;275(December 2021):24–34. https://doi.org/10.5004/dwt.2022.28426
Cerepi A, Loisy C. International Journal of Hydrogen Energy Effect of H 2 -rich water percolation in porous limestone core : simulation of a leakage in a shallow carbonate freshwater aquifer. Int J Hydrogen Energy. 2025;171(June).
Park K, Zajac M, Matschei T, Vollpracht A. The fate of heavy metals in recycled concrete paste upon enforced carbonation: A review. Resour Conserv Recycl Adv. 2025;28(September):200289. https://doi.org/10.1016/j.rcradv.2025.200289
Li T, Xia J, Tang X. Exploring the efficacy of travertine pervious concrete pavement: A novel approach for urban runoff heavy metal mitigation. Case Stud Constr Mater. 2024;21(July):e03556. https://doi.org/10.1016/j.cscm.2024.e03556
Ibrahim K, van Zijl P, Babafemi A. Mitigation of lack of fusion in 3D printed limestone calcined clay cement concrete induced by effective microorganisms. Case Stud Constr Mater. 2024;20(March):e03176. https://doi.org/10.1016/j.cscm.2024.e03176
Bian X, Xiao J, Zhang T, Zeng L. Mitigating acid rain effects on stabilized soils: the role of phosphogypsum in leaching resistance. J Rock Mech Geotech Eng. 2025. https://doi.org/10.1016/j.jrmge.2025.04.031
Xia W, Zhao Z, Ke-neng Z, Ze-yu L, Yong H, Hui-min W. Spatial distribution and risk assessment of heavy metal pollution at a typical abandoned smelting site. Results Eng. 2025;26(April):105281. https://doi.org/10.1016/j.rineng.2025.105281
Fallahizadeh S, Nouredin S, Hossaini A. Journal of Food Composition and Analysis Health risk assessment of heavy metals in drinking water reservoirs of Yasuj Iran using Monte Carlo simulation and sensitivity analysis. J Food Compos Anal. 2025;148(P3):108398. https://doi.org/10.1016/j.jfca.2025.108398