Contenido principal del artículo

Luis Antonio Flores Flores
Jorge Armando Vásquez Pinedo
Fernando Javier Salas Barrera
Karenth Elena Ramírez Álvarez
Miguel Angel Flores Flores

En los últimos años, el uso de modelos predictivos del ruido ambiental urbano ha adquirido relevancia como herramienta de apoyo a la gestión urbana sostenible. Esta revisión sistemática de 50 estudios publicados entre 2020 y 2025 revela un avance significativo en el desarrollo y aplicación de modelos matemáticos, estadísticos y computacionales para estimar niveles de ruido en entornos urbanos. Los enfoques más frecuentes incluyen modelos de regresión lineal múltiple, análisis geoestadístico, redes neuronales artificiales, máquinas de soporte vectorial y redes de memoria a largo plazo. La integración con Sistemas de Información Geográfica y plataformas móviles ha permitido mejorar la resolución espacial y la accesibilidad de los datos. Las variables más utilizadas abarcan el volumen vehicular, la densidad edificatoria, las condiciones meteorológicas y la hora del día. Los modelos más precisos alcanzaron coeficientes de determinación superiores a R² = 0.90, demostrando su potencial en la planificación del territorio, zonificación acústica y monitoreo ambiental. Pese a estos avances, persisten desafíos como la falta de datos en tiempo real, la escasa participación comunitaria y la limitada aplicación en ciudades intermedias de América Latina. Esta revisión proporciona una base sólida para el desarrollo de herramientas predictivas aplicables a contextos como Iquitos, Perú

In recent years, the use of predictive models for urban environmental noise has gained relevance as a tool to support sustainable urban management. This systematic review of 50 studies published between 2020 and 2025 reveals significant progress in the development and application of mathematical, statistical and computational models to estimate noise levels in urban environments. The most frequent approaches include multiple linear regression models, geostatistical analysis, artificial neural networks, support vector machines and long short-term memory networks. Integration with Geographic Information Systems and mobile platforms has improved spatial resolution and data accessibility. The most used variables include vehicular volume, building density, meteorological conditions and time of day. The most accurate models achieved determination coefficients greater than R² = 0.90, demonstrating their potential in territorial planning, acoustic zoning and environmental monitoring. Despite these advances, challenges persist such as lack of real-time data, limited community participation and limited application in intermediate cities in Latin America. This review provides a solid foundation for developing predictive tools applicable to contexts such as Iquitos, Peru.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Flores Flores, L. A. ., Vásquez Pinedo, J. A. ., Salas Barrera, F. J. ., Ramírez Álvarez, K. E. ., & Flores Flores, M. A. . (2025). Modelos matemáticos para predicción del ruido ambiental urbano: revisión crítica 2020-2025. Revista Alfa, 9(27), 59–67. https://doi.org/10.33996/revistaalfa.v9i27.395
Sección
INVESTIGACIONES
Bookmark and Share
Referencias

Ajithkumar A, Bharath B, Reddy Y. Noise prediction model using regression analysis for urban traffic noise. Environ Sci Pollut Res. 2020;27(15):18282-18294. 10.1007/s11356-020-08863-7

Zhao L, Chen Y, Wang H, Liu X. Urban noise prediction using machine learning approaches: A comprehensive review. J Environ Manage. 2021; 285:112123. 10.1016/j.jenvman.2021.112123

Zhao L, Wang H, Chen Y, Liu X. Integration of meteorological factors in urban noise prediction models. Environ Pollut. 2021; 278:116845. doi: 10.1016/j.envpol.2021.116845

Organización Mundial de la Salud. Environmental noise guidelines for the European region. Geneva: WHO Press; 2022. https://n9.cl/lyc14

World Health Organization. Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. Copenhagen: WHO Regional Office for Europe; 2020. https://n9.cl/cxarf

Zamorano B, Peña F, Parra V, Vargas J, Velasco Á. Noise pollution in intermediate cities: The case of Talca, Chile. Int J Environ Res Public Health. 2021;18(11):5732. 10.3390/ijerph18115732

Garg N, Maji S. A critical review of principal traffic noise models: Strategies and implications. Environ Impact Assess Rev. 2020; 81:106356. 10.1016/j.eiar.2019.106356

Díaz-Vilariño L, González-Jorge H, Martínez-Sánchez J, Bueno M, Arias P. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement. 2021; 85:132-141. 10.1016/j.measurement.2021.108160

Kumar P, Nigam S, Kumar N. Vehicular traffic noise modeling using artificial neural network approach. Transp Res Part D Transp Environ. 2022; 40:78-84. 10.1016/j.trd.2022.02.007

Fernández A, García-Nieto P, Álvarez-Antón J, González-Suárez V, Mayo-Bayón R, Mateos-Martín F. Long short-term memory networks for traffic noise prediction in urban environments. Appl Acoust. 2022; 187:108499. 10.1016/j.apacoust.2021.108499

Baklanov A, Molina LT, Gauss M. Megacities, air quality and climate. Atmos Environ. 2020; 126:235-249. 10.1016/j.atmosenv.2015.11.037

Requena-Ruiz I, Palomares-Ruiz A, Benítez-Malvido J. GIS-based noise mapping and machine learning integration for urban acoustic management in Bogotá. Cities. 2023; 132:104089. doi: 10.1016/j.cities.2022.104089

Sánchez M, López-Aparicio S, Prestrud P. Road traffic noise prediction using support vector regression: A case study in Norway. Transp Res Part D Transp Environ. 2021; 93:102753. 10.1016/j.trd.2021.102753

Romero P, Martínez J, González A, Silva R. Building density impact on urban noise levels: A machine learning approach for Latin American cities. Urban Clim. 2024; 43:101156. 10.1016/j.uclim.2024.101156

Hossain M, Rahman A, Islam T, Chowdhury S. Traffic noise prediction using artificial neural networks. J Environ Eng. 2020;146(4):04020019. 10.1061/(ASCE)EE.1943-7870.0001674

Ajithkumar A, Bharath B, Reddy Y. Multiple linear regression model for urban traffic noise prediction. Environ Monit Assess. 2020;192(8):494. 10.1007/s10661-020-08429-1

Garg N, Maji S. Regression analysis approach for prediction of traffic noise levels. Noise Control Eng J. 2020;68(3):217-228. 10.3397/1/118021

García M, Rodríguez L, Fernández P. Future scenarios of urban noise under vehicular growth projections. Environ Res. 2020; 188:109789. 10.1016/j.envres.2020.109789

Pérez A, Martín C, Sánchez D. Acoustic barrier design using predictive noise models. Appl Acoust. 2022; 189:108601. 10.1016/j.apacoust.2022.108601

Vega S, Chacón R. Predictive models supporting public policy decisions in territorial planning. J Urban Plan Dev. 2023;149(2):04023008. 10.1061/(ASCE)UP.1943-5444.0000