Energía verde: El papel de las plantas y hongos en la generación de energía eléctrica
Green energy: The role of plants and fungi in electricity generationContenido principal del artículo
La producción de bioelectricidad a partir de plantas y hongos es importante actualmente porque ofrece una fuente de energía renovable, sostenible y limpia, contribuyendo a la reducción de emisiones contaminantes y diversificando las alternativas energéticas. Por consiguiente, el presente estudio tiene como objetivo sintetizar evidencia científica mediante el método PRISMA sobre la producción de bioelectricidad a través del uso de plantas y hongos. El presente estudio se realizó siguiendo rigurosamente el método PRISMA para garantizar transparencia y exhaustividad en la revisión sistemática. Además, el trabajo se desarrolló bajo un enfoque cuantitativo, de alcance descriptivo y con diseño longitudinal abarcando un período de 2008-2025. De 1,248 registros iniciales, 45 estudios fueron incluidos tras rigurosa selección PRISMA. El 56.5% se publicó entre 2020-2025, con picos en 2022 (7) y 2024 (6). El 78% de revistas aportó un solo estudio; solo 8.7% provino de bases regionales. Esta revisión sistemática confirma que los sistemas bioelectroquímicos híbridos (plantas-hongos) ofrecen una vía viable para generar energía sostenible y remediar residuos en condiciones climáticas extremas.
The production of bioelectricity from plants and fungi is currently important because it offers a renewable, sustainable, and clean energy source, contributing to the reduction of pollutant emissions and diversifying energy alternatives. Consequently, this study aims to synthesize scientific evidence using the PRISMA method on bioelectricity production through the use of plants and fungi. The study was rigorously conducted following the PRISMA method to ensure transparency and comprehensiveness in the systematic review. Furthermore, the work employed a quantitative approach, with a descriptive scope and longitudinal design, covering the period 2008–2025. Out of 1,248 initial records, 45 studies were included after rigorous PRISMA selection. 56.5% were published between 2020–2025, with peaks in 2022 (7 studies) and 2024 (6 studies). 78% of journals contributed only one study; just 8.7% originated from regional databases. This systematic review confirms that hybrid bioelectrochemical systems (plant-fungal) offer a viable pathway for generating sustainable energy and remediating waste under extreme climate conditions.
Descargas
Detalles del artículo
Kuleshova T, Rao A, Bhadra S, Garlapati V, Sharma S, Kaushik A, et al. Plant microbial fuel cells as an innovative, versatile agro-technology for green energy generation combined with wastewater treatment and food production. Biomass Bioenergy. 2022;167:106629. https://www.sciencedirect.com/science/article/pii/S0961953422002914
Shlosberg Y, Schuster G, Adir N. Harnessing photosynthesis to produce electricity using cyanobacteria, green algae, seaweeds and plants. Front Plant Sci. 2022;13:955843.
Debono M, Souza G. Plants as electromic plastic interfaces: A mesological approach. Prog Biophys Mol Biol. 2019;146:123-33. https://www.sciencedirect.com/science/article/pii/S0079610718302256
Rojas S, De La Cruz-Noriega M, Otiniano N, Cabanillas L. Sustainable use of the fungus Aspergillus sp. to simultaneously generate electricity and reduce plastic through microbial fuel cells. Sustainability. 2024;16(17):7413. https://www.mdpi.com/2071-1050/16/17/7413
Behl K, SeshaCharan P, Joshi M, Sharma M, Mathur A, Kareya M, et al. Multifaceted ap-plications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresour Technol. 2020; 304:122993. https://www.sciencedirect.com/science/article/pii/S0960852420302625
Thu H, Xuan C, Thuong T, Nguyen T, Dang Q, Lee J, et al. Antibacterial effect of copper nanoparticles produced in a Shewanella-supported non-external circuit bioelectrical system on bacterial plant pathogens. RSC Adv. 2022;12(7):4428-36. https://www.sciencedirect.com/org/science/article/pii/S2046206922003254
Kuruvinashetti K, Pakkiriswami S, Panneerselvam D, Packirisamy M. Micro photosynthetic power cell array for energy harvesting: Bio-inspired modeling, testing and verification. Ener-gies. 2024;17(7):1749. https://www.mdpi.com/1996-1073/17/7/1749
Thulasinathan B, Jayabalan T, Sethupathi M, Kim W, Muniyasamy S, Sengottuvelan N, et al. Bioelectricity generation by natural microflora of septic tank wastewater (STWW) and bio-degradation of persistent petrogenic pollutants by basidiomycetes fungi: An integrated mi-crobial fuel cell system. J Hazard Mater. 2021;412:125228. https://www.sciencedirect.com/science/article/pii/S0304389421001916
Raqba R, Rafaqat S, Ali N, Munis M. Biodegradation of Reactive Red 195 azo dye and Chlorpyrifos organophosphate along with simultaneous bioelectricity generation through bacterial and fungal based biocathode in microbial fuel cell. J Water Process Eng. 2022; 50:103177. https://www.sciencedirect.com/science/article/pii/S2214714422006213
Shrivastava A, Sharma R. Conversion of lignocellulosic biomass: Production of bioetha-nol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor. 2023;9(1):e12951. https://www.sciencedirect.com/science/article/pii/S2405844023001585
Jayakrishna S, Ganesh S. Unveiling the effects of electric field treatments on crop culti-vation: a game-changing sustainable energy strategy for plant pathogen eradication and boosting yield growth in agriculture, validated with an artificial intelligence approach. Energy Nexus. 2025;18:100438. https://www.sciencedirect.com/science/article/pii/S2772427125000798
Howe C, Bombelli P. Is it realistic to use microbial photosynthesis to produce electricity directly? PLOS Biol. 2023; 21(3):e3001970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980807/
Toczy?owska R, Pielech K, Sekrecka A, Dzieko?ska U. Stimulation of electricity produc-tion in microbial fuel cells via regulation of syntrophic consortium development. Appl Energy. 2020; 271:115184. https://www.sciencedirect.com/science/article/pii/S0306261920306966
Rojas S, De La Cruz N, Cabanillas L, Otiniano N, Soto N, Terrones N. Reducing plastic waste and generating bioelectricity simultaneously through fuel cells using the fungus Pleu-rotus ostreatus. Sustainability. 2024;16(18):7909. https://www.mdpi.com/2071-1050/16/18/7909
Tanneru H, Kuruvinashetti K, Pillay P, Rengaswamy R, Packirisamy M. Feasibility stud-ies of micro photosynthetic power cells as a competitor of photovoltaic cells for low and ultra-low power IoT applications. Energies. 2019; 12(9):1595. https://www.mdpi.com/1996-1073/12/9/1595
Peltier G, Stoffel C, Findinier J, Madireddi S, Dao O, Epting V, et al. Alternative electron pathways of photosynthesis power green algal CO? capture. Plant Cell. 2024; 36(10):4132-42. https://doi.org/10.1093/plcell/koae143
Lecaro J, Garzón V. Energía eléctrica fotosintética: una alternativa económica y ecológi-ca para los sectores rurales y urbanos del Cantón Machala, Provincia de El Oro. Polo Conoc Rev Científico - Prof. 2021; 6(12):670-85. https://dialnet.unirioja.es/servlet/articulo?codigo=8219318
Subash M, Maheshwari A. Investigation of Ochrobacter pseudintermedium ASMCS06 for cleaner biodegradation and bioelectricity production. Clean Mater. 2022;6:100149. https://www.sciencedirect.com/science/article/pii/S2772397622001095
Lin C, Lai C, Liu S, Chen Y, Alfanti L. Enhancing bioelectricity generation and removal of copper in microbial fuel cells with a laccase-catalyzed biocathode. J Clean Prod. 2021; 298:126726. https://www.sciencedirect.com/science/article/pii/S095965262100946X
Sani A, Savla N, Pandit S, Mathuriya S, Gupta P, Khanna N, et al. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustain Energy Technol Assess. 2021; 48:101572. https://www.sciencedirect.com/science/article/pii/S2213138821005865
Rojas W, Rojas S, Benites S, Delfín D, Cruz M, Cabanillas L, et al. Potential use of pep-per waste and microalgae Spirulina sp. for bioelectricity generation. Energy Rep. 2023; 9:253-61. https://www.sciencedirect.com/science/article/pii/S2352484723012453
Sharma R, Kumari R, Pant D, Malaviya P. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of microbial fuel cells. Chemosphere. 2022; 292:133437. https://www.sciencedirect.com/science/article/pii/S0045653521039114
Enamala M, Dixit R, Tangellapally A, Singh M, Dinakarrao S, Chavali M, et al. Photosyn-thetic microorganisms (algae) mediated bioelectricity generation in microbial fuel cell: con-cise review. Environ Technol Innov. 2020; 19:100959. https://www.sciencedirect.com/science/article/pii/S2352186420307227
Wang H, Wang Q, Li X, Wang Y, Jin P, Zheng Y, et al. Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. J Environ Manage. 2019; 248:109310. https://www.sciencedirect.com/science/article/pii/S0301479719310126
Mendu V, Shearin T, Campbell J, Stork J, Jae J, Crocker M, et al. Global bioenergy poten-tial from high-lignin agricultural residue. Proc Natl Acad Sci U S A. 2012;109(10):4014-9.
Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H. Integration of microal-gae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol. 2012;46(21):11505-14.
Blatt M, Pullum G, Draguhn A, Bowman B, Robinson D, Taiz L. Does electrical activity in fungi function as a language? Fungal Ecol. 2024; 68:101326. https://www.sciencedirect.com/science/article/pii/S1754504823001034
Zhang J, Hou Y, Lei L, Hu S. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J Membr Sci. 2022; 662:120962. https://www.sciencedirect.com/science/article/pii/S0376738822007074
El-Esawy M, Elsharkawy S, Youssif M, Raafat A, Ramadan F, Ahmed B, et al. Recent advances of green nanoparticles in energy and biological applications. Mater Today [Inter-net]. 2024; 72:117-39. https://www.sciencedirect.com/science/article/pii/S1369702123003863
Yang Y, Liu L, Tian H, Cooper A, Sprick R. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. Energy Environ Sci. 2023; 16(10):4305-19: https://pubs.rsc.org/en/content/articlelanding/2023/ee/d3ee01265d
Liang G, Xu X, Chen X, Wu J, Song W, Wei W, et al. Designing a periplasmic photosyn-thetic biohybrid system for succinate and electric energy production. Chem Eng J. 2023; 477:147152. https://www.sciencedirect.com/science/article/pii/S1385894723058837
Singh N, Brumer P. Electronic energy transfer in model photosynthetic systems: Markov-ian vs. non-Markovian dynamics. Faraday Discuss. 2011; 153(0):41-50. https://pubs.rsc.org/en/content/articlelanding/2011/fd/c1fd00038a
Lewis K, Ogilvie J. Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy. J Phys Chem Lett. 2012; 3(4):503-10. https://doi.org/10.1021/jz201592v
McCormick A, Bombelli P, Scott A, Philips A, Smith A, Fisher A, et al. Photosynthetic bio-films in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) sys-tem. Energy Environ Sci. 2011; 4(11):4699-709. https://pubs.rsc.org/en/content/articlelanding/2011/ee/c1ee01965a
Duan H, Prokhorenko V, Cogdell R, Ashraf K, Stevens A, Thorwart M, et al. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc Natl Acad Sci U S A. 2017;114(32):8493-8.
Kuruvinashetti K, Tanneru H, Pakkiriswami S, Packirisamy M. Optical interactions in bio-electricity generation from photosynthesis in microfluidic micro-photosynthetic power cells. Energies. 2023;16(21):7353. https://www.mdpi.com/1996-1073/16/21/7353
Xiong W, Peng Y, Ma W, Xu X, Zhao Y, Wu J, et al. Microalgae–material hybrid for en-hanced photosynthetic energy conversion: a promising path towards carbon neutrality. Natl Sci Rev. 2023;10(10):nwad200. https://doi.org/10.1093/nsr/nwad200
Strik D, Hamelers B, Snel J, Buisman C. Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res. 2008; 32(9):870-6. https://onlinelibrary.wiley.com/doi/abs/10.1002/er.1397
Umar A, Smó?ka ?, Gancarz M. The role of fungal fuel cells in energy production and the removal of pollutants from wastewater. Catalysts. 2023; 13(4):687. https://www.mdpi.com/2073-4344/13/4/687
Rojas S, Pimentel C, Cabanillas L, Angelats L. Potential use of the fungus Trichoderma sp. as a plastic-reducing agent and electricity generator in microbial fuel cells. Processes. 2024;12(12):2904. https://www.mdpi.com/2227-9717/12/12/2904
Sarma H, Bhattacharyya P, Jadhav D, Pawar P, Thakare M, Pandit S, et al. Fungal-mediated electrochemical system: prospects, applications and challenges. Curr Res Microb Sci. 2021; 2:100041. https://www.sciencedirect.com/science/article/pii/S2666517421000225
Moubasher H, Tammam A, Saleh M. Enhancing electricity generation using fungal lac-case-based microbial fuel cell. J Microbiol Biotechnol Food Sci. 2024; 14(2):e9703-e9703. https://office2.jmbfs.org/index.php/JMBFS/article/view/9703
Andriukonis E, Celiesiute R, Ramanavicius S, Viter R, Ramanavicius A. From microor-ganism-based amperometric biosensors towards microbial fuel cells. Sensors. 2021; 21(7):2442. https://www.mdpi.com/1424-8220/21/7/2442
Wu C, Liu X, Li W, Sheng G, Zang G, Cheng Y, et al. A white-rot fungus is used as a bio-cathode to improve electricity production of a microbial fuel cell. Appl Energy. 2012; 98:594-6. https://www.sciencedirect.com/science/article/pii/S0306261912001596
Logan B. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009; 7(5):375-81. https://www.nature.com/articles/nrmicro2113