Efectividad de los tratamientos de quitosano y biocarbón en el Cromo VI, Boro y Aluminio
Effectiveness of chitosan and biochar treatments on Chromium VI, Boron and aluminumContenido principal del artículo
El presente estudio tuvo por objetivo evaluar la eficiencia de los tratamientos con quitosano y biocarbón en los metales cromo VI, boro y aluminio en disolución acuosa. Se realizó un tratamiento de 3 réplicas variando el pH (3, 7, 11), dosis (0.1, 0.5, 1) y tiempo de contacto en minutos (45, 80, 120). Se encontró que las eficiencias del quitosano y biocarbón son significativas, logrando en el caso del cromo VI que de la concentración inicial de 31,8235 g/L, el biocarbón logró reducir a 21,69 g/L, el quitosano logró reducir la concentración a 18,68 g/L. Para el boro, la concentración inicial fue de 21,9246 g/L. El biocarbón logró reducir esta concentración a 11,42 g/L. En cambio, el quitosano logró reducir la concentración a 8,07 g/L. Finalmente, en el caso del aluminio, la concentración inicial fue de 29,3318 g/L. El biocarbón logró reducir esta concentración a 21,03 g/L y el quitosano logró reducir la concentración a 10,61 g/L. Los resultados de las condiciones que optimizan la efectividad del quitosano y biocarbón fueron a un pH 7 a una dosis de biocarbón que varía entre 0,5-1 g/L, mientras que la dosis de quitosano oscila entre 0,1-1 g/L. Asimismo, se ha encontrado que el tiempo de contacto óptimo se encuentra en el rango de 45-120 minutos. Finalmente, los adsorbentes naturales demostraron ser efectivos en la remoción de cromo VI, boro y aluminio; en el caso del cromo VI, el biocarbón logra una eficiencia máxima del 31,839?%, el quitosano alcanza una eficiencia del 42,905?%.
The present study aimed to evaluate the effectiveness of chitosan and biochar treatments on the metals chromium VI, boron, and aluminum in aqueous solution. A three-replicate treatment was carried out, varying the pH (3, 7, 11), dosage (0.1, 0.5, 1), and contact time in minutes (45, 80, 120). The efficiencies of chitosan and biochar were found to be significant. In the case of chromium VI, the initial concentration of 31.8235 g/L was reduced by biochar to 21.69 g/L, while chitosan was able to reduce the concentration to 18.68 g/L. For boron, the initial concentration was 21.9246 g/L. Biochar was able to reduce this concentration to 11.42 g/L. In contrast, chitosan was able to reduce the concentration to 8.07 g/L. Finally, in the case of aluminum, the initial concentration was 29.3318 g/L. Biochar managed to reduce this concentration to 21.03 g/L and chitosan managed to reduce the concentration to 10.61 g/L. The results of the conditions that optimize the effectiveness of chitosan and biochar were at pH 7 at a biochar dose ranging between 0.5-1 g/L, while the chitosan dose ranged between 0.1-1 g/L. Likewise, it has been found that the optimal contact time is in the range of 45-120 minutes. Finally, natural adsorbents proved to be effective in the removal of chromium VI, boron and aluminum; in the case of chromium VI, biochar achieves a maximum efficiency of 31.839?%, chitosan reaches an efficiency of 42.905?%.
Descargas
Detalles del artículo
Noormohammadi M, Zabihi M, Faghihi M. Novel chitosan–clay–iron nanocomposites supported on anodic aluminum as an efficient plate-shaped adsorbent for the removal of arsenic and dye from aqueous solutions. J Phys Chem Solids. 2024; 187:111874. https://doi.org/10.1016/j.jpcs.2024.111874
Bogireddy K, Rios E, Agarwal V. Simple one step synthesis of dual-emissive heteroatom doped carbon dots for acetone sensing in commercial products and Cr (VI) reduction. Chem Eng J. 2021;414:128830. https://doi.org/10.1016/j.cej.2021.128830
Landa D, Bogireddy K, Kaur I, Batra V, Agarwal V. Heavy metal ion detection using green precursor derived carbon dots. iScience. 2022;25(2):103816. https://doi.org/10.1016/j.isci.2022.103816
Ahmaruzzaman M. MXenes based advanced next generation materials for sequestration of metals and radionuclides from aqueous stream. J Environ Chem Eng. 2022:108371. https://doi.org/10.1016/j.jece.2022.108371
Helvaci C, Borates. In: Alderton D, Elias S, editors. Encyclopedia of Geology. 2nd ed. Academic Press; 2021: 489–504. https://doi.org/10.1016/B978-0-12-409548-9.12049-4
Piñeiro X, Ave M, Mallah N, Caamaño-Isorna F, Jiménez N, Vieira D, Muñoz-Barús J. Heavy metal contamination in Peru: Implications on children’s health. Sci Rep. 2021;11(1):22729. https://doi.org/10.1038/s41598-021-02163-0
Goren A, Recepoglu Y, Karagunduz A, Khataee A, Yoon Y. A review of boron removal from aqueous solution using carbon-based materials: an assessment of health risks. Chemosphere. 2022; 293:133587. https://doi.org/10.1016/j.chemosphere.2022.133587
Hussain F, Memon N. Materials and technologies for the removal of chromium from aqueous systems. In: Lichtfouse E, editor. Sustainable Agriculture Reviews. 40. Cham: Springer; 2020:113–177. https://doi.org/10.1007/978-3-030-33281-5_4
Kerur S, Bandekar S, Hanagadakar M, Nandi, Ratnamala G, Hegde P. Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Mater Today Proc. 2021; 42:1112–1121. https://doi.org/10.1016/j.matpr.2020.12.492
Peydayesh M, Pauchard M, Bolisetty S, Stellacci F, Mezzenga R. Ubiquitous aluminium contamination in water and amyloid hybrid membranes as a sustainable possible solution. Chem Commun. 2019;55(74):11143–11146. https://doi.org/10.1039/C9CC05337A
Casierra-Posada F, Arias-Salinas J, Rodríguez-Quiroz J. Excess aluminum tolerance of the common water-hyacinth (Eichhornia crassipes) under greenhouse conditions. Chil J Agric Res. 2021;81(4):597–606. http://dx.doi.org/10.4067/S0718-58392021000400597
Maamoun I, Bensaida K, Eljamal R, Falyouna O, Tanaka K, Tosco T, Eljamal O. Rapid and efficient chromium (VI) removal from aqueous solutions using nickel hydroxide nanoplates (nNiHs). J Mol Liq. 2022; 358:119216. https://doi.org/10.1016/j.molliq.2022.119216
Bolan S, Wijesekara H, Amarasiri D, Zhang T, Ragályi P, Brdar-Jokanovi? M, et al. Boron contamination and its risk management in terrestrial and aquatic environmental settings. Sci Total Environ. 2023; 894:164744. https://doi.org/10.1016/j.scitotenv.2023.164744
Bai C, Zhang H, Luo Q, Ye X, Liu H, Li Q, Wu Z. Boron separation by adsorption and flotation with Mg–Al-LDHs and SDBS from aqueous solution. Chin J Chem Eng. 2023; 61:192–200. https://doi.org/10.1016/j.cjche.2023.02.009
Zhang F, Xi L, Zhao M, Du Y, Ma L, Chen S, Zhang TC. Efficient removal of Cr (VI) from aqueous solutions by polypyrrole/natural pyrite composites. J Mol Liq. 2022; 365:120041. https://doi.org/10.1016/j.molliq.2022.120041
Wan Y, Luo H, Cai Y, Dang Z, Yin H. Selective removal of total Cr from a complex water matrix by chitosan and biochar modified-FeS: Kinetics and underlying mechanisms. J Hazard Mater. 2023; 454:131475. https://doi.org/10.1016/j.jhazmat.2023.131475
Ma J, Jia N, Jin H, Yao S, Zhang K, Kai Y, Wen Y. Chitosan induced synthesis of few-layer MoS2/Fe-doped biochar and its dual applications in Cr (VI) removal. Sep Purif Technol. 2023; 317:123880. https://doi.org/10.1016/j.seppur.2023.123880
Xiang J, Lin Q, Yao X, Yin G. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environ Res. 2021; 195:110650. https://doi.org/10.1016/j.envres.2020.110650
Thongsamer T, Vinitnantharat S, Pinisakul A, Werner D. Fixed-bed biofilter for polluted surface water treatment using chitosan impregnated-coconut husk biochar. Environ Pollut. 2023; 334:122137. https://doi.org/10.1016/j.envpol.2023.122137
Mahmoud M, Ibrahim G. Cr (VI) and doxorubicin adsorptive capturé by a novel bionanocomposite of Ti-MOF@ TiO2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol. 2023; 253:126489. https://doi.org/10.1016/j.ijbiomac.2023.126489
Qu W, Wang H, Li G, Song Z, Liu X, Zhang F, Ji D. Efficient removal of Pb (II), Cr (VI), and tetracycline hydrochloride from aqueous solutions using UiO-66-AMP@PAN: thermodynamics, kinetics, and isothermal adsorption. J Environ Chem Eng. 2023;11(5):110598. https://doi.org/10.1016/j.jece.2023.110598
Taha A, Kandil S, Mohamed L, Sallam M, Heiba H. Surface investigations of selective biosorption and reduction of hexavalent chromium ions Cr (VI) over chitosan@MoO3 and chitosan-cellulose@MoO3 biocomposite. J Mol Struct. 2023; 1288:135716. https://doi.org/10.1016/j.molstruc.2023.135716
Yang Y, Zhang Y, Wang G, Yang Z, Xian J, Yang Y, Xu X. Adsorption and reduction of Cr (VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. J Environ Chem Eng. 2021;9(4):105407. https://doi.org/10.1016/j.jece.2021.105407
Köker B, Cebeci M. Removal of Cr (VI) from tanning wastewater using chitosan-SDS complexes in PEUF: Optimization and analysis via responsé surface methodology. J Water Process Eng. 2023; 54:103966. https://doi.org/10.1016/j.jwpe.2023.103966