Relación entre características químicas del suelo y desarrollo vegetativo del cafeto en diferentes arreglos agroforestales
Relationship between soil chemical characteristics and vegetative development of coffee trees in different agroforestry arrangementsContenido principal del artículo
El desarrollo del cafeto (Coffea arabica L.) está estrechamente relacionado, entre otras características, con las condiciones químicas del suelo. Ante ello, el objetivo fue determinar la relación entre las características químicas del suelo y el desarrollo del cafeto bajo arreglos agroforestales en el distrito de Huancabamba, Oxapampa (Perú). La investigación tuvo un enfoque cuantitativo de tipo descriptivo comparativo-correlacional y transversal. Se emplearon los arreglos cafeto con pacae y cafeto con pino; cada arreglo estuvo establecido en dos parcelas distintas. En cada arreglo se delimitó tres sub parcelas, en las que se colectó una muestra compuesta de suelo para la determinación de características químicas, se pesó la producción de café pergamino seco y se estimó parámetros de crecimiento del cafeto. La relación entre las características químicas del suelo y el desarrollo del cafeto fue determinada mediante la correlación de Pearson. Se observó una correlación significativa (p 0.05), lo que comprobó la respuesta del vigor vegetativo e índice de vigor vegetativo del cafeto al magnesio y materia orgánica respectivamente. En general, se observa mejor condición edafoforestal para el crecimiento y desarrollo del cafeto en el arreglo cafeto con pacae.
The development of the coffee plant (Coffea arabica L.) is closely related, among other characteristics, to the chemical conditions of the soil. Given this, the objective was to determine the relationship between the chemical characteristics of the soil and the development of coffee plants under agroforestry arrangements in the district of Huancabamba, Oxapampa (Perú). The research had a quantitative approach of a descriptive, comparative-correlational, and cross sectional type. The arrangements used were coffee with pacae and coffee with pine; each arrangement was established in two different plots. In each arrangement, three subplots were delimited, where a composite soil sample was collected to determine chemical characteristics, the production of dry parchment coffee was weighed, and coffee plant growth parameters were estimated. The relationship between soil chemical characteristics and coffee plant development was determined using Pearson's correlation. A significant correlation (p 0.05) was observed, confirming the response of vegetative vigor and vegetative vigor index of the coffee plant to magnesium and organic matter, respectively. In general, better edaphoforest conditions for the growth and development of the coffee plant were observed in the coffee-pacae arrangement.
Descargas
Detalles del artículo
De Bauw P, Van Asten P, Jassogne L, Merckx R. Soil fertility gradients and production constraints for coffee and banana on volcanic mountain slopes in the East African Rift: A case study of Mt. Elgon. Agriculture, Ecosystems & Environment. 2016; 231: 166-175. https://doi.org/10.1016/j.agee.2016.06.036
Maro G, Kilambo D, Kiwelu L, Mbwambo S. Integrated soil fertility management practices for coffee in Tanzania: a review. World Journal of Agricultural Research. 2024; 12(1): 8-17. https://doi.org/10.12691/wjar-12-1-2
Ferraz G, Avelar R, Bento N, Souza F, Ferraz P, Damasceno F, Barbari M. Spatial variability of soil fertility attributes and productivity in a coffee crop farm. Agronomy Research. 2019; 17(4): 1630-1638. https://doi.org/10.15159/ar.19.142
Irawan S, Antriyandarti E, Suprihatin D, Pangesti A. Study the relationship of soil fertility with land suitability for arabica coffee (Coffea arabica L.) development in Bandar sub-district, Pacitan district. En IOP Conference Series: Earth and Environmental Science. 2022; 1111(1). https://doi.org/10.1088/1755-1315/1111/1/012029
Sudharta K, Hakim A, Fadhilah M, Fadzil M, Prayogo C, Kusuma Z, Suprayogo D. Soil organic matter and nitrogen in varying management types of coffee-pine agroforestry systems and their effect on coffee bean yield. Biodiversitas Journal of Biological Diversity. 2022; 23(11). https://doi.org/10.13057/biodiv/d231142
Guimarães P, Reis T. Nutrição e adubação do cafeeiro. En Reis P, Cunha R (Eds.). Café arábico: do plantio à colheita. Epamig; 2010. p. 343-414. https://n9.cl/i55id
Silva S, Lima J. Physical attributes of soil and its relation with space productivity of coffee arabic. Coffee Science. 2013; 8(4): 395-403. https://n9.cl/k5n29w
Prasad P, Hariyappa N, Chandrashekar N, Manonmani G, Hareesh S, Nadaf S, Jagadeesan M, Venkatesh D, Sujatha K. Studies on soil fertility status of coffee growing regions in Wayanad district. Journal of Plantation Crops. 2018; 46(3): 180-189. https://acortar.link/rvxN4C
Massawe P, Mrema J. Evaluation of the fertility status of the soils under coffee cultivation in Moshi rural district, Kilimanjaro region, Tanzania”. Asian Journal of Environment & Ecology. 2017; 3(4): 1-7. https://doi.org/10.9734/AJEE/2017/33953
Carmo D, Nannetti D, Lacerda T, Nannetti A, Santo D. Micronutrients in soil and leaf of coffee plants under an agroforest system in the south of Minas Gerais. Coffee Science. 2012; 7(1): 76-83. https://n9.cl/mqyyo
Cerda R, Avelino J, Harvey C, Gary C, Tixier P, Allinne C. Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Protection. 2020; 134. https://doi.org/10.1016/j.cropro.2020.105149
Furey G, Tilman D. Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences. 2021; 118(49): e2111321118. https://doi.org/10.1073/pnas.2111321118
Souza G, Carlette C, Silva S, Borghi E. Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of southeast Brazil. Acta Agronómica. 2022; 71(3): 1-17. https://doi.org/10.15446/acag.v71n3.93941
SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú). Datos hidrometeorológicos a nivel nacional. Ministerio del Ambiente; 2024. https://n9.cl/r278uv
Martunis L, Dahliani L, Yana D. Analysis of physical and chemical characteristics of soil in coffee plantations in the Mount Puntang Social Forestry Area, West Java. AMCA Journal of Science and Technology. 2023; 3(1): 1-6. https://doi.org/10.51773/ajst.v3i1.233
de Souza F, dos Santos J, dos Santos C, de Oliveira E, da Silva R, de Paula M, Alves J, Oliveira J, Rodrigues J, Martins W. Physical and chemical soil quality and litter stock in agroforestry systems in the eastern amazonia. Agriculture, Ecosystems & Environment. 2025; 382: 109479. https://doi.org/10.1016/j.agee.2025.109479
Gutierrez L, Lévano J. Efecto de sistemas agroforestales y monocultivo de cacao (Theobroma cacao L.), en los indicadores físicos del suelo. Investigación y Amazonía. 2023; 13(16): 33-41. https://n9.cl/6b36l
Villacis J, Almeida R, Amaral J, Vieira M, Ramos M, Taube P, Bessa R, Silva do Sacramento J, Cristi de Barros E, Tello R, Villacis N. Chemical soil attributes in different use systems, itacoatiara-am, Brazil. Folia Amazónica. 2021; 30(1): 49-59. https://doi.org/10.24841/fa.v30i1.527
Alvarado C, Bobadilla L, Valqui L, Valqui G, Valqui-Valqui L, Vigo C, Vásquez H. Characterization of Coffea arabica L. parent plants and physicochemical properties of associated soils, Perú. Heliyon. 2022; 8(10). https://doi.org/10.1016/j.heliyon.2022.e10895
Cessa-Reyes V, Ruiz-Rosado O, Alcudia-Armida L. The coffee agroforestry system in Mexico. Agro productividad. 2020; 13(11). https://doi.org/10.32854/agrop.v13i11.1811
Morales V, Mora A, Virginio E, Villatoro M. Growth and productivity of Coffea arabica var. Esperanza L4A5 in different agroforestry systems in the caribbean region of Costa Rica. Agriculture. 2024; 14(10): 1723. https://doi.org/10.3390/agriculture14101723
Sileshi G, Mafongoya P, Nath A. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. En Dagar JC, Gupta SR, Teketay D, editores. Agroforestry for degraded landscapes. Springer; 2020. https://doi.org/10.1007/978-981-15-4136-0_8
Dollinger J, Jose S. Agroforestry for soil health. Agroforest Systems. 2018; 92: 213-219. https://doi.org/10.1007/s10457-018-0223-9
Dilas-Jiménez JO, Mugruza-Vassallo CA. Instalación de fincas cafetaleras en sistema agroforestal para recuperación y sostenibilidad de suelos degradados de selva alta. Revista de Investigación de Agroproducción Sustentable. 2020; 4(1): 8-18. https://doi.org/10.25127/aps.20201.534
Silicuana N, Vidal S, Vargas G, Miranda R. Evaluación de la fertilidad del suelo en parcelas con dos diferentes manejos de hacer agricultura (sistema agroforestal sucesional y sistema convencional) en zona semiárida en la provincia Tapacarí - Cochabamba. Apthapi. 2018; 4(1): 962-970. https://doi.org/10.53287/neci1984cy52h
Sarvade S, Singh R, Prasad H, Prasad D. Agroforestry practices for improving soil nutrient status. Popular Kheti. 2014; 2(1): 60-64. https://acortar.link/vNIFN3
de Sousa L, de Souza V, de Paula J, Ferreira T, Bernabé A, Boone G, dos Santos Pereira L, Carriço E. The nutrient magnesium in soil and plant: a review. International Journal of Plant & Soil Science. 2023; 35(8): 136-144. https://doi.org/10.9734/ijpss/2023/v35i82890
Mengel K, Kirkby E. Principios de nutrición vegetal (1.a ed.). International Potash Institute; 2000. https://acortar.link/1NJPxe
Xie K, Cakmak I, Wang S, Zhang F, Guo S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal. 2021; 9(2): 249-256. https://doi.org/10.1016/j.cj.2020.10.005
Yan B, Hou Y. Effect of soil magnesium on plants: a review. IOP Conference Series: Earth and Environmental Science. 2018; 170(2). https://acortar.link/yNqXpK
Rosenstock N, Berner C, Smits M, Krám P, Wallander H. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests. New Phytologist. 2016; 211: 542-553. https://doi.org/10.1111/nph.13928
Senbayram M, Gransee A, Wahle V, Thiel H. Role of magnesium fertilisers in agriculture: plant-soil continuum. Crop and Pasture Science. 2015; 66(12): 1219-1229. https://doi.org/10.1071/CP15104
Castro-Tanzi S. El calcio es un nutriente limitante en cafetales bajo manejo intensivo de fertilizantes en ultisoles. Agronomía Costarricense. 2017; 41(1): 105-119. https://doi.org/10.15517/rac.v41i1.29756
Sadeghian S. La acidez del suelo, una limitante común para la producción de café. Avances Técnicos Cenicafé. 2016; 466: 1-12. https://doi.org/10.38141/10779/0466
Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T. Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytologist. 2000; 146: 47-57. https://doi.org/10.1046/j.1469-8137.2000.00616.x
Ricci M, Alves B, Miranda S, Oliveira F. Growth rate and nutritional status of an organic coffee cropping system. Scientia Agricola. 2005; 62(2): 138-144. https://doi.org/10.1590/S0103-90162005000200008
da Silva V, Rabelo A, Fialho E, de Sá Mendonça E. Yield and nutritional status of the conilon coffee tree in organic fertilizer systems. Revista Ciência Agronômica. 2013; 44: 773-781. https://doi.org/10.1590/S1806-66902013000400014
Leite LFC, Iwata BDF, Araújo ASF. Soil organic matter pools in a tropical savanna under agroforestry system in northeastern Brazil. Revista Árvore. 2014; 38: 711-723. https://doi.org/10.1590/S0100-67622014000400014
Khadka D. Assessment of relationship between soil organic matter and macronutrients, Western Nepal. Journal of Biological, Pharmaceutical and Chemical Research. 2016; 3: 4-12. https://acortar.link/1Cca0N