Contenido principal del artículo

Pedro Zamorano-Aguilar
Astrid Seperiza Wittwer
Rubén Bustos Cerda
Benjamín Rojano

Buddleja globosa (matico) es una planta medicinal nativa de Chile, ampliamente reconocida por las propiedades terapéuticas de sus flores y hojas. Sin embargo, su tallo ha sido poco explorado y generalmente descartado, a pesar de su potencial como fuente de compuestos bioactivos. El objetivo de este estudio fue investigar la concentración de polifenoles y la capacidad antioxidante del tallo de esta planta medicinal. Se cuantificaron compuestos bioactivos, como fenoles totales, flavonoides, vitamina C y catequina. La capacidad antioxidante se evaluó mediante las metodologías ABTS, DPPH y ORAC-H. Los resultados mostraron una elevada concentración de polifenoles totales (2749,78 mg de ácido gálico/100 g PS), flavonoides (2096,53 mg de catequina equivalente/100 g PS) y una significativa capacidad antioxidante en los ensayos ORAC-H (35661,73 ?mol Trolox equivalente/100 g PS), ABTS (13404,39 ?mol Trolox equivalente/100 g PS) y DPPH (8268,45 ?mol Trolox equivalente/100 g PS). Estos hallazgos destacan el valor del tallo de Matico como una rica fuente de compuestos bioactivos. Este es el primer reporte sobre la composición del tallo de Buddleja globosa, sugiriendo que partes de la planta comúnmente descartadas poseen un alto potencial para el desarrollo de productos antioxidantes y terapéuticos.

Buddleja globosa (matico) is a medicinal plant native to Chile, widely recognized for the therapeutic properties of its flowers and leaves. However, its stem has been little explored and generally discarded, despite its potential as a source of bioactive compounds. The aim of this study was to investigate the polyphenol concentration and antioxidant capacity of the stem of this medicinal plant. Bioactive compounds, such as total phenols, flavonoids, vitamin C and catechin, were quantified. The antioxidant capacity was assessed using ABTS, DPPH and ORAC-H methodologies. The results showed a high concentration of total polyphenols (2749.78 mg gallic acid/100 g DW), flavonoids (2096.53 mg catechin equivalent/100 g DW) and a significant antioxidant capacity in the ORAC-H (35661.73 ?mol Trolox equivalent/100 g DW), ABTS (13404.39 ?mol Trolox equivalent/100 g DW) and DPPH (8268.45 ?mol Trolox equivalent/100 g DW) assays. These findings highlight the value of Matico stem as a rich source of bioactive compounds. This is the first report on the stem composition of Buddleja globosa, suggesting that commonly discarded parts of the plant possess a high potential for the development of antioxidant and therapeutic products.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Zamorano-Aguilar, P., Seperiza Wittwer, A., Bustos Cerda, R., & Rojano, B. (2025). Capacidad antioxidante y contenido fenólico total del extracto acuoso del tallo de matico (buddleja globosa). Revista Alfa, 9(25), 38–49. https://doi.org/10.33996/revistaalfa.v9i25.330
Sección
INVESTIGACIONES
Biografía del autor/a

Pedro Zamorano-Aguilar, Universidad de Santiago de Chile. Santiago, Chile

Candidato a Doctor en Farmacia y Salud, Universidad de Salamanca. Magíster en Ciencia de los Alimentos, Universidad Austral de Chile. Experiencia y participación en diversos proyectos asociados a compuestos funcionales, antioxidantes, y su actividad biológica. Asociado a la investigación en neurociencia cognitiva nutricional, a través del modelo biológico Caenorhabditis elegans, utilizado como proxy de la enfermedad del Alzheimer.

Astrid Seperiza Wittwer, Universidad de Santiago de Chile. Santiago, Chile

Ingeniera comercial y médico veterinaria. Directora del Centro de Estudios en Llanquihue, Universidad de Santiago de Chile (CEUS, Llanquihue). Directora de diferentes proyectos de innovación social y educacionales relacionados a la alimentación saludable. Experiencia a cargo de desarrollos de dietas experimentales con énfasis en alimentación saludable. Experta en manejo presupuestario y actividades críticas propias de los proyectos de investigación aplicada.

Rubén Bustos Cerda, Universidad de Santiago de Chile. Santiago, Chile

Bioquímico de la Universidad de Santiago de Chile. Ph.D. en Ingeniería Química de la Queen’s University de Belfast, Reino Unido. Académico jornada completa en el Departamento de Ingeniería Química ay Bioprocesos de la Universidad de Santiago de Chile. Sus líneas de investigación son texturización humedad de proteínas de legumbres para desarrollo de análogos de cortes enteros de carne, y suprareciclaje de subproductos agrícolas para uso en alimentos funcionales veganos y vegetarianos. Participación en congresos nacionales e internacionales, patentes de invención.

Benjamín Rojano, Universidad Nacional de Colombia. Medellín, Colombia

MSc en Ciencia y tecnología de los alimentos. Ph. D en Química. Docente Titular Adscrito a la Escuela de Química de la Facultad de Ciencias Sede Medellín. Líneas de investigación están asociadas a la química de antioxidantes, fenómenos oxidativos, síntesis química, productos naturales y biodiversidad colombiana. Publicación de artículos científicos publicados.

Bookmark and Share
Referencias

Nirmal N, Khanashyam A, Mundanat A, Shah K, Babu K, Thorakkattu P, et al. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods. 2023;12(3):556. https://lc.cx/4dacfa

FAO. Food wastage foot print impacts on natural resources. 2013. https://lc.cx/PkoTHo

Trigo J, Alexandre E, Saraiva J, Pintado M. High value-added compounds from fruit and vegetable by-products: characterization, bioactivities, and application in the development of novel food products. Crit Rev Food Sci Nutr. 2020;60(8):1388-1416. https://lc.cx/nhqjMF

Galanakis C. Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol. 2012; 26:68-87. https://lc.cx/JRlya3

Rifna E, Misra N, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: a review. Crit Rev Food Sci Nutr. 2021;1-34. https://lc.cx/Pnpq8R

Mármol I, Quero J, Ibarz R, Ferreira-Santos P, Teixeira J, Rocha C, et al. Valorization of agro-food by-products and their potential therapeutic applications. Food Bioprod Process. 2021; 128:247-258. https://lc.cx/QDbvOq

Singh P, Gupta A, Qayoom I, Singh S, Kumar A. Orthobiologics with phytobioactive cues: a paradigm in bone regeneration. Biomed Pharmacother. 2020; 130:110754. https://lc.cx/k2uHI3

Aires V, Delmas D. Common pathways in health benefit properties of resveratrol in cardiovascular diseases, cancers and degenerative pathologies. Curr Pharm Biotechnol. 2015;16(3):219-244. https://lc.cx/hDPD1b

Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol. 2021; 95:16-34. https://lc.cx/A7ABql

Sureda A, Tejada S, Bibiloni M, Tur J, Pons A. Polyphenols: well beyond the antioxidant capacity: polyphenol supplementation and exercise-induced oxidative stress and inflammation. Curr Pharm Biotechnol. 2014;15(4):373-379. https://lc.cx/eRMW4X

Allkin B. Useful plants as medicines: at least 28,187 plant species are currently recorded as being of medicinal use. In: Willis K, editor. State of the world’s plants. London (UK): Royal Botanic Gardens, Kew; 2017. 22-29. https://lc.cx/qYPe_F

WHO. The world medicines situation 2011: traditional medicines: global situation, issues and challenges. Geneva: WHO; 2011. 3:1-14. https://lc.cx/qw7hxX

Kemppainen L, Kemppainen T, Reippainen J, Salmenniemi S, Vuolanto P. Use of complementary and alternative medicine in Europe: health-related and sociodemographic determinants. Scand J Public Health. 2018; 46(4):448-455. https://lc.cx/MXPnhm

Parisius L, Stock-Schröer B, Berger S, et al. Use of home remedies: a cross-sectional survey of patients in Germany. BMC Fam Pract. 2014; 15:116. https://lc.cx/dg78E_

Avello M, Cisternas I. Fitoterapia, sus orígenes, características y situación en Chile. Rev Med Chil. 2010;138(10):1288-1293. https://lc.cx/CfRHDc

Ministerio de Salud de Chile (MINSAL). Medicamentos herbarios tradicionales: 103 especies vegetales. 2009. https://lc.cx/E80pur

Houghton P. Ethnopharmacology of some Buddleja species. J Ethnopharmacol. 1984;11(3):293-308. https://lc.cx/s79qJz

Zamorano-Aguilar P, Morales M, Rivillas Y, López J, Rojano B. Antioxidant activity and cytotoxic effect of Chilean Buddleja globosa (Matico) and Ribes magellanicum (Zarzaparrilla) flower extracts. Acta Sci Pol Hortic Cultus. 2020;19(6):59-70. https://lc.cx/KM4lG6

Houghton P, Manby J. Medicinal plants of the Mapuche. J Ethnopharmacol. 1985;13(1):89-103. https://lc.cx/lSNAh1

Muñoz M, Salas E. Use of a standardized dry extract of leaves of Buddleja globosa hope, BG-126, for the treatment and prevention of gastrointestinal disorders caused by treatment with nitrofurantoin and other antimicrobials. Google Pat. 2014;1-19. https://lc.cx/BdA9Qc

Singleton V, Rossi J. Colorimetría de fenoles totales con reactivos de ácido fosfomolíbdico-fosfotúngstico. Am J Enol Vitic. 1965; 16:144-58. https://lc.cx/-diX9u

Marinova D, Ribarova F, Atanassova M. Fenólicos totales y flavonoides totales en frutas y verduras búlgaras. J Univ Chem Technol Metall. 2005;40(3):255-60. https://lc.cx/PZNkcU

Kelebek H, Selli S, Canbas A, Cabaroglu T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kosan. Microchem J. 2009;91(2):187-92. https://lc.cx/DV2EXF

Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol. 1995; 28:25-30. https://lc.cx/gxoRma

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10):1231-7. https://lc.cx/qnbtZP

Prior R, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53(10):4290-4302. https://lc.cx/8_i8MY

Romero M, Rojano B, Mella J, Pessoa C, Lissi E, López C. Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-Pyrogallol red assay in the presence of Triton X-100 micelles. Molecules. 2010; 15(9):6152-67. https://lc.cx/iPflKM

Vogel H, Razmilic I, González B. Matico (Buddleja globosa Hope): evaluación de diferentes accesiones, número de cosechas, humedad del suelo y extracción de nutrientes. Agric Técn. 2004; 64(4):413-420. https://lc.cx/28d_oU

Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016; 8:33-42. https://lc.cx/__AJX9

Zhou Y, Zheng J, Li Y, Xu D, Li S, Chen Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016; 8:515. https://lc.cx/sR_3K5

Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai T. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients. 2013; 5:3779-3827. https://lc.cx/tMrCaZ

Jun H, Chung M, Dawson K, Rodriguez R, Houng S, Cho S, et al. Nutrigenomic analysis of hypolipidemic effects of Agastache rugosa essential oils in HepG2 cells and C57BL/6 mice. Food Sci Biotechnol. 2010; 19:219-227. https://lc.cx/wwG1gq

Song J, Kim M, Kwon H, Park I. Antimicrobial activity and components of extracts from Agastache rugosa during growth period. J Food Sci Nutr. 2001; 6:10-15.

Min B, Hattori M, Lee H, Kim Y. Inhibitory constituents against HIV-1 protease from Agastache rugosa. Arch Pharm Res. 1999; 22:75-77. https://lc.cx/BF4COa

Park C, Yeo H, Baskar T, Park Y, Park J, Lee S, et al. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants (Basel). 2019;8(3):75. https://lc.cx/WpsC7x

de Oliveira C, Hensel A, Mello J, Pinha A, Panizzon G, Lechtenberg M, et al. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains. Fitoterapia. 2017; 118:87-93. https://lc.cx/Bxa5Ol

Foyet H, Tsala D, Zogo J, Carine A, Heroyne L, Oben E. Anti-inflammatory and anti-arthritic activity of a methanol extract from Vitellaria paradoxa stem bark. Pharm Res. 2015; 7:367-377. https://lc.cx/AK97eO

Ohmori Y, Ito M, Kishi M, Mizutani H, Katada T, Konishi H. Antiallergic constituents from oolong tea stem. Biol Pharm Bull. 1995; 18:683-686. https://lc.cx/qhj3Hk

Spizzirri U, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi O, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009; 10:1923-1930. https://lc.cx/mPDoc3

Yoshino S, Mitoma T, Tsuruta K, Todo H, Sugibayashi K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm Dev Technol. 2013; 19:395-400. https://lc.cx/5lLQ20

Jain S, Srivastava S. Traditional use of some Indian plants among islanders of the Indian Ocean. Indian J Tradit Knowl. 2005; 4:345-357. https://lc.cx/43QCF7

Dolui A, Sharma H, Marein T, Lalhriatpuii T. Folk herbal remedies from Meghalaya. Indian J Tradit Knowl. 2004; 3:358-364. https://lc.cx/qiQxjs

Neuwinger H. African ethnobotany: poisons and drugs: chemistry, pharmacology, toxicology. New York: Chapman and Hall; 1996. 500-509. https://lc.cx/rn3cxI

Balangcod T, Balangcod A. Ethnomedical knowledge of plants and healthcare practices among the Kalanguya tribe in Tinoc, Ifugao, Luzon, Philippines. Indian J Tradit Knowl. 2011; 10:227-238. https://lc.cx/yFPSOY

Diwani G, Rafie S, Hawash S. Antioxidant activity of extracts obtained from residues of nodes, leaves, stem and root of Egyptian Jatropha curcas. Afr J Pharm Pharmacol. 2009; 3:521-530. https://lc.cx/2-usME

Pérez-Ochoa M, Chávez-Servia J, Vera-Guzmán E, Aquino-Bolaños A, Carrillo-Rodríguez J. Medicinal plants used by indigenous communities of Oaxaca, Mexico, to treat gastrointestinal disorders. In: Perveen S, editor. Pharmacognosy medicinal plants. London: IntechOpen; 2016. 1-13. https://lc.cx/1cmK6D

Joaquín-Ramos A, López-Palestina C, Pinedo-Espinoza J, Altamirano-Romo S, Santiago-Saenz Y, Aguirre-Mancilla C, et al. Phenolic compounds, antioxidant properties and antifungal activity of jarilla (Barkleyanthus salicifolius [Kunth] H. Rob & Brettell). Chil J Agric Res. 2020; 80(3):352-360. https://lc.cx/uyO60B

Bursal E, Köksal E, Gülçin I, Bilsel G, Gören A. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res Int. 2013; 51:66-74. https://lc.cx/omWPf3

Chirinos R, Pedreschi R, Rogez H, Larondelle Y, Campos D. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind Crops Prod. 2013; 47:145-152. https://lc.cx/lB_UV4

Prior R, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, et al. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity) of plasma and other biological and food samples. J Agric Food Chem. 2003; 51(11):3273-3279. https://lc.cx/YxORU3

Li S, Li S, Gan R, Song F, Kuang L, Li H. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind Crops Prod. 2013; 51:289-298. https://lc.cx/b0Ba-F

Shang X, Pan H, Li M, Miao X, Ding H. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2011; 138(1):1-21. https://lc.cx/ltcYi8

Wang L. The study progress of Lonicera japonica. Med Inf. 2010; 8:2293-2296.

Yiemwattana I, Chaisomboon N, Jamdee K. Antibacterial and anti-inflammatory potential of Morus alba stem extract. Open Dent J. 2018; 12:265-274. https://lc.cx/RbWfmd

Wang W, Zu Y, Fu Y, Efferth T. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am J Chin Med. 2012; 40(2):349-356. https://lc.cx/uuV2c2

Khunakornvichaya A, Lekmeechai S, Pham P, Himakoun W, Pitaksuteepong T, Morales N, Hemstapat W. Morus alba L. stem extract attenuates pain and articular cartilage damage in the anterior cruciate ligament transection-induced rat model of osteoarthritis. Pharmacology. 2016; 98:209-216. https://lc.cx/putOZi

Stratil P, Klejdus B, Kubán V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta. 2007; 71(4):1741-1751. https://lc.cx/wi11o8

Campos A, Lissi E. Kinetics of the reaction between 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) derived radical cations and phenols. Int J Chem Kinet. 1997;29(3):219-224. https://lc.cx/1ehOOX

Osman A, Wong K, Fernyhough A. ABTS radical-driven oxidation of polyphenols: isolation and structural elucidation of covalent adducts. Biochem Biophys Res Commun. 2006;346(1):321-329. https://lc.cx/BKFItP

Krishnan V, Ahmad S, Mahmood M. Antioxidant potential in different parts and callus of Gynura procumbens and different parts of Gynura bicolor. Biomed Res Int. 2015;1-7. https://lc.cx/3YIHwK