Trampa para el control de moscas de los cuernos (Haematobia irritans) en vacas lecheras
Trap for the control of horn flies (Haematobia irritans) in dairy cowsContenido principal del artículo
La investigación evalúa la eficacia de una trampa de paso para el control de la mosca de los cuernos (Haematobia irritans) en vacas lecheras en la Finca San José, ubicada en Tulcán, Ecuador. Haematobia irritans representa un problema para la ganadería, afectando la salud y productividad del ganado. Tradicionalmente, se han empleado plaguicidas químicos para su control, pero el uso excesivo ha provocado resistencia en las moscas y problemas ambientales. En este estudio, se diseñó y probó un prototipo de trampa de paso, el cual se instaló estratégicamente en la ruta diaria de las vacas hacia los potreros después del ordeño. Se realizaron conteos de moscas antes y después de que las vacas atravesaran la trampa, con un total de 15 mediciones a lo largo de seis semanas. Los resultados mostraron una reducción significativa en el número de moscas, con una disminución promedio del 35% al 45%. La eficacia de la trampa varió según el color del ganado y las condiciones climáticas, siendo más efectiva en días soleados. Además, se observó una correlación positiva entre la reducción de moscas y el incremento en la producción de leche, lo que sugiere que la disminución del estrés inducido por las moscas y la mejora en la salud contribuye a una mayor productividad lechera. Este estudio subraya la importancia de adoptar métodos de control de plagas más sostenibles y específicos para mejorar la eficiencia productiva en la ganadería.
The study evaluates the effectiveness of a walk-through trap for the control of horn flies (Haematobia irritans) in dairy cows at Finca San José, located in Tulcán, Ecuador. Horn flies represent a significant challenge for livestock, affecting cattle health and productivity. Traditionally, chemical pesticides have been used for their control, but overuse has led to resistance in flies and environmental problems. In this study, a walk-through trap prototype was designed and tested, which was strategically installed on the daily route of cows to the pastures after milking. Fly counts were made before and after the cows passed through the trap, with a total of 15 measurements over six weeks. The results showed a significant reduction in the number of flies, with an average decrease of 35% to 45%. The effectiveness of the trap varied according to the color of the cattle and the weather conditions, being more effective on sunny days. Furthermore, a positive correlation was observed between fly reduction and increased milk production, suggesting that decreased fly-induced stress contributes to higher milk productivity. This study underlines the importance of adopting more sustainable and targeted pest control methods to improve productive efficiency in livestock farming.
Descargas
Detalles del artículo
Madhav M, Baker D, Morgan A, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol. 2020; 288: 109297. https://www.sciencedirect.com/science/article/pii/S0304401720302776
Pérez de León A, Mitchell R, Watson D. Ectoparasites of Cattle. Veterinary Clinics of North America: Food Animal Practice. 2020; 36 (1):173–85. https://www.sciencedirect.com/science/article/pii/S0749072019300593
Mullié W, Prakash A, Müller A, Lazutkaite E. Insecticide Use against Desert Locust in the Horn of Africa 2019–2021 Reveals a Pressing Need for Change. Agronomy. 2023; 13 (3). https://doi.org/10.3390/agronomy13030819
Bendele K, Guerrero F, Lohmeyer K, Foil L, Metz R, Johnson C. Horn fly transcriptome data of ten populations from the southern United States with varying degrees and molecular mechanisms of pesticide resistance. Data Brief. 2023; 48:109272. https://www.sciencedirect.com/science/article/pii/S2352340923003918
Psota E, Luc E, Pighetti G, Schneider L, Trout Fryxell R, Keele J, et al. Development and validation of a neural network for the automated detection of horn flies on cattle. Comput Electron Agric. 2021; 180:105927. https://www.sciencedirect.com/science/article/pii/S016816992033132X
Miraballes C, Buscio D, Diaz A, Sanchez J, Riet-Correa F, Saravia A, et al. Efficiency of a walk-through fly trap for Haematobia irritans control in milking cows in Uruguay. Vet Parasitol Reg Stud Reports. 2017; 10:126–31. https://www.sciencedirect.com/science/article/pii/S240593901730062X
Moulds MS. Chapter 46 - Cicadas. In: Resh VH, Cardé RT, editors. Encyclopedia of Insects (Second Edition). San Diego: Academic Press; 2009. 163–4. https://www.sciencedirect.com/science/article/pii/B9780123741448000552
de Oliveira G, Magalhães V, Alves C, de Jesus L, Medeiros M, Gomes B de T, et al. Evaluation of pyriproxyfen in cattle by oral treatment: An alternative to control Haematobia irritans. Vet Parasitol. 2021; 299:109565. https://www.sciencedirect.com/science/article/pii/S0304401721002259
Brewer G, Boxler D, Domingues L, Trout Fryxell R, Holderman C, Loftin K, et al. Horn Fly (Diptera: Muscidae)—Biology, Management, and Future Research Directions. J Integr Pest Manag. 2021; 12 (1): 42. https://doi.org/10.1093/jipm/pmab019
Ren?ínová V, Voslá?ová E, Bedá?ová I, Ve?erek V. Pest flies on dairy farms affect behaviour and welfare of dairy cows during summer season. Acta Veterinaria Brno. 2021; 90 (3): 255–62.
Oyarzún M, Quiroz A, Birkett MA. Insecticide resistance in the horn fly: alternative control strategies. Med Vet Entomol. 2008; 22 (3):188–202. https://doi.org/10.1111/j.1365-2915.2008.00733.x
Lafuente E, Alves F, King J, Peralta C, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol. 2021; 11 (12):8136–55. https://doi.org/10.1002/ece3.7646
Jensen K, Jespersen J, Birkett M, Pickett J, Thomas G, Wadhams L, et al. Variation in the load of the horn fly, Haematobia irritans, in cattle herds is determined by the presence or absence of individual heifers. Med Vet Entomol. 2004; 18 (3): 275–80. https://doi.org/10.1111/j.0269-283X.2004.00506.x
Beran F, Jiménez-Alemán G, Lin M ying, Hsu Y, Mewis I, Srinivasan R, et al. The Aggregation Pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) Revisited. J Chem Ecol. 2016; 42 (8):748–55.
Kavallieratos N, Boukouvala M, Skourti A, Antonatos S, Petrakis P V, Papachristos D, et al. Comparison of Three Attractants for the Effective Capture of Xylotrechus chinensis Adults in Multi-Funnel Traps. Insects. 2023 Aug 1; 14 (8).
ElAshmawy W, Abdelfattah E, Williams D, Gerry A, Rossow H, Lehenbauer T, et al. Stable fly activity is associated with dairy management practices and seasonal weather conditions. PLoS One. 2021; 1 (18). https://doi.org/10.1371/journal.pone.0253946
Saska P, van der Werf W, Hemerik L, Luff M, Hatten T, Honek A. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. Journal of Applied Ecology. 2013; 50 (1):181–9. https://doi.org/10.1111/1365-2664.12023
Baker B, Green T, Loker A. Biological control and integrated pest management in organic and conventional systems. Biological Control. 2020; 140:104095. Available from: https://www.sciencedirect.com/science/article/pii/S1049964419301586
Thomas M. Colloquium Paper This paper was presented at the National Academy of Sciences colloquium’ ’Plants and Population: Is There Time?. 1999. 96 (1). www.pnas.org.
Hansen A, Moon R, Endres M, Pereira G, Heins B. The Defensive Behaviors and Milk Production of Pastured Dairy Cattle in Response to Stable Flies, Horn Flies, and Face Flies. Animals. 2023; 13 (24). https://www.mdpi.com/2076-2615/13/24/3847
Harris J, Hillerton J, Morant S V. Effect on milk production of controlling muscid flies, and reducing fly-avoidance behaviour, by the use of Fenvalerate ear tags during the dry period. Journal of Dairy Research. 2009; 54 (2):165–71. https://www.cambridge.org/core/product/62BF2225266EB466B7A1FB45925EBCF7
Ren?ínová V, Voslá?ová E, Bedá?ová I, Ve?erek V. Pest flies on dairy farms affect behaviour and welfare of dairy cows during summer season. Acta Veterinaria Brno. 2021; 90 (3): 255–62. https://doi.org/10.2754/avb202190030255
Quist M, LeBlanc S, Hand K, Lazenby D, Miglior F, Kelton D. Milking-to-Milking Variability for Milk Yield, Fat and Protein Percentage, and Somatic Cell Count. J Dairy Sci. 2008; 91 (9): 3412–23. https://doi.org/10.3168/jds.2007-0184
Apalowo O, Ekunseitan D, Fasina Y. Impact of Heat Stress on Broiler Chicken Production. Poultry. 2024; 3 (2):107–28. https://www.mdpi.com/2674-1164/3/2/10
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals. Multidisciplinary Digital Publishing Institute (MDPI); 2023. 13 (22): 3451. https://doi.org/10.3390/ani13223451
Das R, Sailo L, Verma N, Bharti P, Saikia J, Imtiwati, et al. Impact of heat stress on health and performance of dairy animals: A review. Veterinary World. Veterinary World; 2016. 260–8. DOI: 10.14202/vetworld.2016.260-268
Khan I, Ullah F, Jelani G, Ullah S, Hussain S, Saleem U. Assessing the Impact of Environmental Factors (Temperature and Humidity) On Nutrient Requirements and Metabolism in Animals. INDUS JOURNAL OF SCIENCE. 2023; 1 (1):15-19. https://induspublishers.com/IJS
Rojas-Downing M, Nejadhashemi A, Harrigan T, Woznicki S. Climate change and livestock: Impacts, adaptation, and mitigation. Clim Risk Manag. 2017; 16:145–63. https://www.sciencedirect.com/science/article/pii/S221209631730027X
Liu Z, Ezernieks V, Wang J, Wanni Arachchillage N, Garner J, Wales W, et al. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci Rep. 2017; 7 (1). DOI: 10.1038/s41598-017-01120-9
Antanaitis R, Džermeikait? K, Krištolaityt? J, Ribelyt? I, Bespalovait? A, Bulvi?i?t? D, et al. Impact of Heat Stress on the In-Line Registered Milk Fat-to-Protein Ratio and Metabolic Profile in Dairy Cows. Agriculture (Switzerland). 2024; 14 (2). https://doi.org/10.3390/agriculture14020203
Franzoi M, Niero G, Visentin G, Penasa M, Cassandro M, de Marchi M. Variation of detailed protein composition of cow milk predicted from a large database of mid-infrared spectra. Animals. 2019; 9 (4): 176. https://doi.org/10.3390/ani9040176
Wati L, Sargowo D, Nurseta T, Zuhriyah L. The Role of Protein Intake on the Total Milk Protein in Lead-Exposed Lactating Mothers. Nutrients. 2023; 15 (11): 2584. DOI:10.3390/nu15112584
Tommasoni C, Fiore E, Lisuzzo A, Gianesella M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals. Multidisciplinary Digital Publishing Institute (MDPI); 2023. 13 (15):2538. https://doi.org/10.3390/ani13152538
Meyer C, Lynch G, Stamo D, Miller E, Chatterjee A, Kralj J. A high-throughput and low-waste viability assay for microbes. Nat Microbiol. 2023; 8 (12): 2304–14. https://www.nature.com/articles/s41564-023-01513-9
Laanto E, Mäkelä K, Hoikkala V, Ravantti J, Sundberg L. Adapting a phage to combat phage resistance. Antibiotics. 2020; 9 (6). DOI: 10.3390/antibiotics9060291