Contenido principal del artículo

Gladys Marilú Castro Pérez
Saul Moreano Carrasco
Carlos Enrique Coacalla Castillo
Carla Taipe Carrasco

Los hongos se consideran alimentos de nueva generación y son de creciente interés para los consumidores. Se caracterizan por un alto contenido de compuestos biológicamente activos. El objetivo fue evaluar la capacidad antioxidante de Lentinula edodes Berk en fermentación fase sólida en granos de Chenopodium quinoa Willd. Las condiciones de fermentación se optimizaron mediante el diseño factorial y para la comparación de medias el ANOVA y prueba de Tukey. Las variables de respuesta evaluadas fueron: el contenido de proteínas, carbohidratos, cenizas, grasas, fenoles totales, vitamina C y capacidad antioxidante en muestras fermentadas y quinua pura (QP). Los resultados de FFS mostraron mayor contenido de proteínas a los 60 días con 19.40 g/100 g, con un incremento significativo de 32.56%, los carbohidratos se redujeron significativamente (P<0.05), de 69.00 g/100 g a 49.83 g/100 g, la QP presentó valores de 5.87 para vitamina C y polifenoles totales 68.89 mg/100 g. La capacidad antioxidante a los 60 días de incubación fue 1066.52 µMolTE/100 g superior en 39.96% con respecto a la QP que presento 640.36 µMolTE/100 g. Por lo tanto, los resultados demuestran que la FFS de la quinua fermentada con shiitake incremento significativo de las propiedades nutricionales y funcionales, este producto sería una alternativa prometedora para la alimentación.

Mushrooms are considered new generation foods and are of growing interest to consumers. They are characterized by a high content of biologically active compounds. The objective was to evaluate the antioxidant capacity of Lentinula edodes Berk in solid phase fermentation in Chenopodium quinoa Willd. grains. The fermentation conditions were optimized by factorial design and for the comparison of means the ANOVA and Tukey's test. The response variables evaluated were: protein, carbohydrate, ash, fat, total phenols, vitamin C and antioxidant capacity in fermented samples and pure quinoa (QP). The FFS results showed higher protein content at 60 days with 19.40 g/100 g, with a significant increase of 32.56%, carbohydrates were significantly reduced (P<0.05), from 69.00 g/100 g to 49.83 g/100 g, the QP presented values of 5.87 for vitamin C and total polyphenols 68.89 mg/100 g. The antioxidant capacity at 60 days of incubation was 1066.52 µMolTE/100 g, which was 39.96% higher than that of QP, which presented 640.36 µMolTE/100 g. Therefore, the results show that the FFS of quinoa fermented with shiitake significantly increased the nutritional and functional properties, this product would be a promising alternative for food.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Castro Pérez, G. M., Moreano Carrasco, S., Coacalla Castillo, C. E., & Taipe Carrasco, C. (2023). Capacidad antioxidante de Lentinula edodes Berk en fermentación fase sólida de granos Chenopodium quinoa Willd. Revista Alfa, 7(20), 288–298. https://doi.org/10.33996/revistaalfa.v7i20.215
Sección
GENERAL
Biografía del autor/a

Gladys Marilú Castro Pérez, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Micaela Bastidas de Apurímac. Abancay, Perú

Maestro en Ciencia y Tecnología de Alimentos, Universidad Nacional de San Antonio Abad del Cusco. Biólogo por la Universidad Nacional de San Antonio Abad del Cusco. Docente ordinario categoría asociado en la Universidad Nacional Micaela Bastidas de Apurímac, jefe del Laboratorio de Microbiología. Ponente en el VI Congreso Internacional de Ingeniería Agroindustrial 2019. Ponencia: Aspectos generales de los hongos y su importancia en la alimentación y salud, Apurímac. Área de interés Microbiología y Seguridad Alimentaria, Perú.

Saul Moreano Carrasco, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Micaela Bastidas de Apurímac. Abancay, Perú

Maestro en Ingeniería Ambiental y Desarrollo Sustentable por la Pontificia Universidad Católica Argentina. Ingeniero Agroindustrial por la Universidad Nacional Micaela Bastidas de Apurímac. Docente Auxiliar en la Universidad Nacional Micaela Bastidas de Apurímac. Área de interés en investigación: aprovechamiento de subproductos agroindustriales, Perú.

Carlos Enrique Coacalla Castillo, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Micaela Bastidas de Apurímac. Abancay, Perú

Doctor en Educación, Universidad César Vallejo. Maestro en Gestión Pública, Universidad César Vallejo. Maestro en Medio Ambiente y Desarrollo Sostenible con mención en Gestión Ambiental, Universidad Nacional Hermilio Valdizán. Doctorando en Ciencias de la Salud, Universidad Andina del Cusco, Perú. Posdoctorado en Metodología de la Investigación y Producción Científica, Universidad Hipócrates. Biólogo, Universidad Nacional de San Antonio Abad del Cusco, Perú. Docente de la Universidad Nacional Micaela Bastidas de Apurímac. Participación en eventos nacionales e internacionales. Miembro de la Red de Investigadores Latinoamericanos, Perú.

Carla Taipe Carrasco, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Micaela Bastidas de Apurímac. Abancay, Perú

Ingeniero Agroindustrial, Universidad Nacional Micaela Bastidas de Apurímac. Jefe de Práctica en la Universidad Nacional Micaela Bastidas de Apurímac. Área de interés en investigación: aprovechamiento de subproductos agroindustriales, alimentos funcionales, reología de los alimentos, Perú.

Bookmark and Share
Referencias

Sánches E, Royse D. La biología y el cultivo de Pleurotus spp. Editorial UTEHA noriega editores República de México. 2001;1 – 268. https://medioambiente.ulibros.com/la-biologia-y-el-cultivo-de-pleurotus-spp-n0zc0.html

Fernández F. Guía Práctica de Producción de Setas (Pleurotus Spp). Fungitec Asesorías, Guadalajara, Jalisco. México, 2004; 14 – 25. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Gu%C3%ADa+Pr%C3%A1ctica+de+Producci%C3%B3n+de+Setas+%28Pleurotus+Spp%29.+Fungitec+&btnG=

Chimey C, Holgado M. Los hongos comestibles silvestres y cultivados en Perú. Editor. Hacia un Desarrollo Sostenible del Sistema de Producción Consumo de los Hongos Comestibles y Medicinales en Latinoamérica: Avances y Perspectivas en el Siglo XXI. Cap. 21. 2010;381-395. http://www.hongoscomestiblesymedicinales.com/Libro%20info-Spanish%20290710s.pdf

Gaitán-Hernández R. Cultiva hongos comestibles. ¡Aprovecha sus propiedades nutricionales y medicinales! Instituto de Ecología, A.C; 2020. https://www.inecol.mx/inecol/index.php/es/2013-06-05-10-34-10/17-ciencia-hoy/484-grow-edible-mushrooms

De La Cruz-Marcos R, Areche F, Segura S, López J, De La Cruz-Calderón G, Solano M, Onofre A, Camayo-Lapa B, Otivo J, Flores D, Pairazaman M, Domínguez J, Aguilar S, Aguirre L. and Paricanaza-Ticona D. Possible effects of different types of agricultural wastes on food security and mushroom (Pleurotus ostreatus) production. Brazilian Journal of Biology. 2023; 83: e273829. DOI:10.1590/1519-6984.273829

Chung I, Kim Y, Moon H. Improved accuracy of geographical origin identification of shiitake grown in sawdust medium: A compound-specific isotope model-based pilot study. Food Chem. 2022; 369:130955. DOI: 10.1016/j.foodchem.2021.130955

Sharma V, Kamal S, Singh M. Especie y producción regional de hongos en los principales países productores de hongos: China, Japón, EE. UU., Canadá e India. Champiñón Res. 2022; 30:99–108. DOI: 10.36036/MR.30.2.2021.119394

Niego A, Rapior S, Thongklang N, Raspe O, Jaidee W, Lumyong S, Hyde K. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel). 2021; 7(5):397. DOI:10.3390/jof7050397

Citores L, Ragucci S, Russo R. Structural and functional characterization of the cytotoxic protein ledodin, an atypical ribosome-inactivating protein from shiitake mushroom (Lentinula edodes). Protein Science. 2023; 32(4): e4621. DOI:10.1002/pro.4621

Sheng K, Wang C, Chen B, Kang M, Wang M, Liu K, Wang M. Recent advances in polysaccharides from Lentinula edodes (Berk.): Isolation, structures and bioactivities. Food Chem. 2021; 358:129358-129883. DOI: 10.1016/j.foodchem.2021.129883

Ngai P, Ng T. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Science. 2003; 73(26):3363-3374. DOI: 10.1016/j.lfs.2003.06.023

Afrin S, Rakib M, Kim B, Kim J, Ha Y. Eritadenine from Edible Mushrooms Inhibits Activity of Angiotensin Converting Enzyme in Vitro. J Agric Food Chem. 2016; 64(11):2263-2268. DOI: 10.1021/acs.jafc.5b05869

Okon O. The Nutritional Applications of Quinoa Seeds. A. Varma (eds). Biology and Biotechnology of Quinoa. Singapore. 2021;35-49. DOI:10.1007/978-981-16-3832-9_3

Gordillo-Bastidas E, Diaz-Rizzolo D, Roura E, Massanés T, Gomis R. Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. Journal of Nutrition & Food Sciences, 2016, 6(3):497. DOI:10.4172/2155-9600.1000497

Kilinc O, Ozgen S, Selamoglu Z. Bioactivity of triterpene saponins from quinoa (Chenopodium quinoa Willd.). Research & Reviews: Research Journal of Biology. 2016; 4(4):25-28. https://www.rroij.com/open-access/bioactivity-of-triterpene-saponins-from-quinoa-chenopodium-quinoa-willd-.pdf

Huchin V M, Estrada-Mota I. Estrada-León R, Cuevas-Glory L, Ortiz-Vázquez E, Vargas M, Betancur-Ancona D, Sauri-Duch E. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chemistry. 2014; 152(1):508–515. DOI: 10.1016/j.foodchem.2013.12.013

Swallah M, Sol H, Affoh R, Fu H, Yu H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. International Journal of Food Science, 2020;1-8. DOI:10.1155/2020/9081686

Nimse S, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances. 2015; 5:27986-28006. DOI:10.1039/C4RA13315C

Starzynska-Janiszewska A, Stodolak B, Dulinski R, Mickowska B, Sabat R, Fermentation of colored quinoa seeds with neurospora intermedia to obtain oncom-type products of favorable nutritional and bioactive characteristics. Cereal Chem. 2017; 94 (3):619–624. DOI:10.1094/CCHEM-10-16-0264-R.

Shi M, Yang Y, Wang Q, Zhang Y, Wang Y, Zhang Z. Production of total polyphenol from fermented soybean curd residue by Lentinula edodes, Int. J. Food Sci. Technol. 2012;47(6):1215-1221. DOI:10.1111/j.1365-2621.2012. 02961.x

Tang Y, Li X, Chen P. Caracterización de las composiciones de ácidos grasos, carotenoides, tocoferol/tocotrienol y actividades antioxidantes en semillas de tres Chenopodium quinoa Willd. genotipos. Química alimentaria. 2015; 174:502-508. DOI: 10.1016/j.foodchem.2014.11.040

Zhai F, Wang Q, Han J. Nutritional components and antioxidant properties of seven kinds of cereals fermented by the basidiomycete Agaricus blazei. J. Cereal Sci. 2015; 65(4):202-208. DOI: 10.1016/j.jcs.2015.07.010

AOAC, Official methods of Analysis. 2000.

Lester G, Lewers K, Medina M, Saftner R. Análisis comparativo de fenoles totales de fresa a través de Fast Blue BBvs. Folin-Ciocalteu: Ensayo de interferencia por ácido ascórbico. J. Alimentos Compos. Anal. 2012; 27:102–107. DOI:10.1016/j.jfca.2012.05.003

Brand-Williams W, Cuvelier M, Berset C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995; 28: 25–30.DOI:10.1016/S0023-6438(95)80008-5

Re R, Pellegrin N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radic. Biol. Med. 1999; 26: 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3

Benzie I, Strain J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurements of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999; 299: 15–27. DOI:10.1016/S0076-6879(99)99005-5

Singleton V, Orthofer R, Lamuela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol.1999; 299: 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Bhanja T, Kumari A, Banerjee R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour. Technol. 2009; 100(11):2861–2866, DOI: 10.1016/j.biortech.2008.12.055.

Hur S, Lee S, Kim Y, Choi I, Kim G. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014; 160:346–356. DOI: 10.1016/j.foodchem.2014.03.112

Chen L, Gong Y, Cai Y. Genome Sequence of the Edible Cultivated Mushroom Lentinula edodes (Shiitake) Reveals Insights into Lignocellulose Degradation. PLoS One. 2016;11(8): e0160336. DOI: 10.1371/journal.pone.0160336.

Bisen P, Baghel R, Sanodiya B, Thakur G, Prasad G. Lentinula edodes: a macrofungus with pharmacological activities. Curr Med Chem. 2010;17(22):2419-2430. doi:10.2174/092986710791698495

Abugoch J. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res. 2009; 58:1-31. DOI:10.1016/S1043-4526(09)58001-1.

Xu L, Guo S, Zhang S. Effects of solid-state fermentation on the nutritional components and antioxidant properties from quinoa. Emir J Food Agric. 2019; 31(1):39-45. DOI:10.9755/ejfa.2019.v31.i1.1898

Koziol-Latinreco M. Chemical Composition and Nutritional Evaluation of Quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal., 1992; 5:35–68. DOI: 10.1016/0889-1575(92)90006-6.

Eliopoulos C, Arapoglou D, Chorianopoulos N, Markou G, Haroutounian S. Conversion of brewers' spent grain into proteinaceous animal feed using solid state fermentation. Environ Sci Pollut Res Int. 2022; 29(20):29562-29569. DOI:10.1007/s11356-021-15495-w

Repo-Carrasco R, Espinoza C, Jacobsen S. Valor nutricional y uso de los cultivos andinos de quinua (Chenopodium quinoa) y kaniwa (Chenopodium pallidicaule). Reseñas Aliment. Int, 2003; 19:179–189 DOI:10.1081/FRI-120018884

Qian JY, Kuhn M. Characterization of Amaranthus cruentus and Chenopodium quinoa Starch. Starch/Staerke, 1999; 5 (4):116–120, DOI:10.1002/(sici)1521-379x (199904)51:4<116: aid-star116>3.3.co;2-i.

Han J, An C, Yuan J. Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J Appl Microbiol. 2005;99(4):910-915. DOI:10.1111/j.1365-2672.2005. 02672.x

Li S, Chen Y, Li K, Lei Z, Zhang Z. Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta. Int. Biodeterior. Biodegrad., 2016; 109:113–118. DOI: 10.1016/j.ibiod.2016.01.020

Kris-Etherton P, Hecker K, Bonanome A. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113 Suppl 9B:71S-88S. DOI:10.1016/s0002-9343(01)00995-0

Silva A, Neuza J. Antioxidant properties of Lentinula edodes and Agaricus blazei extracts. J. Food Qual., 2011; 34 (6): 386–394. DOI:10.1111/j.1745-4557.2011. 00416.x

Silva E, Cavallazzi J, Müller G, Souza J. Biotechnological applications of Lentinula edodes. J. food, Agric. Environ., 2007; 5(3): 403–407. DOI:10.1234/4.2007.1254.

Yang L, Fu T, Yang F. Biovalorization of soybean residue (okara) via fermentation with Ganoderma lucidum and Lentinula edodes to attain products with high anti-osteoporotic effects. J Biosci Bioeng. 2020;129(4):514-518. DOI: 10.1016/j.jbiosc.2019.10.003