El exceso de cobre inhibe el crecimiento de Bidens pilosa en condiciones de laboratorio
Contenido principal del artículo
Las especies vegetales pueden presentar problemas de toxicidad debido al exceso de sales minerales presentes en el suelo, en especial los micronutrientes, que causan alteraciones en su crecimiento y desarrollo. Las asteráceas, como Bidens pilosa, toleran elevados niveles de metales pesados en comparación con otros grupos taxonómicos, por ese motivo se investigó el efecto del exceso de cobre sobre su crecimiento y como se relaciona con su índice de translocación. Para ello se expusieron las plántulas a diferentes concentraciones de cobre y se evaluó su crecimiento y almacenamiento en hojas y raíces. Fueron tres los tratamientos utilizados (T1: 0 uM, T2: 50 uM y T3: 100 uM) con tres repeticiones por tratamiento y acondicionadas en un sistema hidropónico al cual se agregó el medio nutritivo de Hoagland modificado, diluido a la tercera parte de su concentración normal. Los resultados muestran que cuando las concentraciones de cobre van en aumento, se presentó inhibición en la longitud del tallo y la raíz y también disminución en el peso fresco y peso seco; sin embargo, el número de hojas permanece constante. Además, se observó clorosis y necrosis leve para T2 y T3, y es la raíz el órgano que tiene mayor concentración de cobre en T3. El coeficiente de extracción y el índice de producción relativa disminuyen, pero el índice de Translocación (IT) aumenta según aumenta la concentración del cobre. Se concluye que a mayor concentración de cobre se inhibe el crecimiento de la especie vegetal, pero aumenta IT.
Descargas
Detalles del artículo
Arunakumara, K, Walpola B, y Yoon M. Alleviation of phytotoxicity of copper on Agricultural plants. J Korean Soc Appl Biol Chem. 2013; 56, 505?517.
Sadon F, Ibrahem A y Ismail K. An overview of rice husk applications and modification techniques in wastewater treatment. J Purity Utility Reaction Environ. 2012; 1, 308–34.
Gastañuidui H. Evaluación de la contaminación ambiental por metales pesados en las playas del Distrito de Salaverry. Tesis de Doctorado. Universidad Nacional de Trujillo. Trujillo. Perú.195p. 2003.
Thomas E, Omueti J y Ogundayomi O. The effect of phosphate fertilizer on heavy metal in soils and Amaranthus caudatu. Agr Biol J N Am. 2012; 3, 145–9.
Pineda R. Presencia de hongos micorrízicos arbusculares y contribución de Glomus intraradices en la absorción y translocación de Cinc y Cobre en Helianthus annuus L. “Girasol” crecido en un suelo contaminado con residuos de mina. Tesis de Doctorado. Universidad de Colima- Tecoman, México. 157p. 2004.
Tiwari S, y Lata C. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. Front. Plant Sci.2018; 9:452.
Yeh T, y Pan C. Effect of chelating agents on copper, zinc, and lead uptake by sunflower, Chinese cabbage, cattail, and reed for different organic contents of soils. J Environ Anal Toxicol. 2012; 2, 145–8.
Singh S, Parihar P, Singh R, Singh P, y Prasad S. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci.2016; 6:1143.
Zhu Y, Chen Y, Zhang X, Xie G, y Qin M. Copper stress?induced changes in biomass accumulation, antioxidant activity and flavonoid contents in Belamcanda chinensis calli. Plant Cell, Tissue and Organ Culture (PCTOC). 2020; 142:299–311.
Printz B, Lutts S, Hausman J, y Sergeant K. Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics. Front. Plant Sci.2016; 7:601.
Yruela I. Copper in plants. Brazilian J Plant Physiol. 2005; 17: 145–156.
Rather B, Masood A, Sehar Z, Majid A, Anjum N, y Khan N. Mechanisms and Role of Nitric Oxide in Phytotoxicity-Mitigation of Copper. Front. Plant Sci. 2020; 11:675.
Connan S, y Stengel D. Impacts of ambient salinity and copper on brown alga: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquatic Toxicology. 2011; 104 (1–2):94–107.
Lequeux H, Hermans C, Lutts S, y Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation, and mineral profile. Plant Physiology and Biochemistry. 2010; 48 (8):673–82.
Kamali M, Pour M, y Moud A. Copper effects on growth parameters of hollyhock (Althaea rosea L.). J Ornamental Hortic Plants.2012; 2, 95–101.
Olteanu Z, Elena T, Lacramioara O, Maria M, Craita M & Gabriela V. Copper-induced changes in antioxidative response and soluble protein level in Triticum aestivum cv. beti seedlings. Rom Agric Res. 2013; 30: 163-170.
Feigl G, Kumar D, Lehotai N, Peto A, Molnar A, Rácz E, Ordog A, Erdei L, Kolbert Z, y Laskay G. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress, and photosynthetic damage. Acta Biológica Hungarica. 2015; 66 (2):205–21.
Chen B, Ho P, y Juang K. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models. Ecotoxicol. 2013; 22, 174–83.
Mostofa M, Hossain M, Masayuki M, y Tran L. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Scientific Reports, 2015; 5:11433.
Bernal M, Roncel M, Ortega J, Picorel R & Yruela I. Copper effect on cytochrome b(559) of photosystem II under photoinhibitory conditions. Physiol Plant. 2004; 120:686–694.
Bartolome A, Villaseñor I y Yang W. Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional, Uses, Phytochemistry, and Pharmacology. Evidence-Based Complementary and Alternative Medicine. 2013; ID 340215, 51 p.
Tamashiro J, y Seitao F. Observacoes sobre o ciclo de vida de Bidens pilosa L. Hoehnea. 1980; 7: 27-40.
Salazar M. Fitorremediación de suelos contaminados con metales pesados. Evaluación de especies nativas en la Provincia de Córdoba. Tesis Doctoral. Universidad de Córdoba, Argentina. 301 p. 2014.
Avelino C. Eficacia de la fitoextracción para la remediación de suelos contaminados en Villa de Pasco. Tesis de Maestría, Universidad Nacional del Callao-Perú. 150 p. 2013.
Lasat M. The use of plants for the removal of toxic metals from contaminated soil. American Association for the Advancement of Sciencie. Environmental Sciencie and Engineering Fellox. 33p. 2000. https://clu-in.org/download/remed/lasat.pdf
Reigosa M, Pedro N, y Sanchez A. La ecofisiologia vegetal una ciencia de síntesis. Edit. Thomson. España. 1175 p. 2004.
Feng S, Jiyan S, Chaofeng S, Guangcun C, Shaoping H, y Yingxu C. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves, Plant Mol. Biol. 2009; 71: 251e263.
Song-Hua W, Zhi-Min Y, Hong Y, Lu B, Shao-Qong L, y Ya-Ping L. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Bot. Bull. Acad. Sinica. 2004; 45: 203e212.
Azooz M, Abou-Elhamd M, y Al-Fredan M. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum’cv. Hasaawi) at early growing stage. Aust J Crop Sci. 2012; 6:688–694.
Kopittke P, Menzies N, de Jonge M, McKenna B, Donner E, Webb R, Paterson D, Howard D, Ryan C, Glover C, et al. In-situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol. 2011; 156:663–673.
Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad M, y Bharwana S. The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res. 2015; 11:8148-62.
Potters P, Pasternak T, Guisez Y, y Jansen M. Different stresses, similar morphogenic responses: integrated a plethora of pathways. Plant Cell Environ.2009; 32: 158e169.
López-Bucio J, Cruz-Ramírez A, y Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol.2003; 6:280e287.
Nibau C, Gibbs D, y Coates J. Branching out in new directions: the control of root architecture by lateral root formation. New Phytol.2008; 179: 595e614.
Liu D, Jiang W, Meng A, Zou J, Gu J, y Zeng M. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell. 2009; 33, 25e32.
Madejón C, Ramírez-Benítez J, Corrales I, Barceló J, y Poschenrieder C. Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ. Exp. Bot. 2009; 67: 415e420.
Yeh C, Hung W, y Huang H. Copper treatment activates mitogen-activated protein kinase signaling in rice. Physiol. Plant. 2003; 119: 392e399.
Pasternak T, Rudas V, Potters G, y Jansen M. Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ. Exp. Bot. 2005; 53: 299e314.
Zhang H, Xia Y, Wang G, y Shen Z. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total copper-zinc superoxide dismutase in the roots of Elsholtzia haichowensis. Planta, 2008; 227: 465e475.
Jie L, y Zhiting X. Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia haichowensis, Water Air Soil Pollut. 2005; 168, 5e16.
Thounaojam T, Panda P, Mazumdar P, Kumar D, Sharma G, Sahoo L, y Panda S. Excess copper-induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry. 2012; 53 :33-39.
Shu W, Ye Z, Lan C, Zhang Z, y Wong M. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon, Environ. Pollut. 2002; 120: 445e453.
Bouazizi H, Jouili H, Geitmann A, y El Ferjani E. Cell wall accumulation of Cu ions and modulation of lignifying enzymes in primary leaves of bean seedlings exposed to excess copper. Biol. Trace Elem. Res. 2011; 139, 97–107.
Brackhage C, Huang J, Schaller J, Elzinga E, y Dudel E. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci. Rep. 2014; 4, 4944.
Wan H, Du J, He J, Lyu D, y Li H. Copper accumulation, subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks. Tree Physiol. 2019; 39, 1215–1234.
Cui J, Zhao Y, Chan T, Zhang L, Tsang D, y Li X. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: implication for phytostabilization. J. Hazard. Mater. 2020; 381:121-208.
Meychik N, Nikolaeva Y, Kushunina M, y Yermakov I. Contribution of apoplast to short-term copper uptake by wheat and mung bean roots. Funct. Plant Biol. 2016; 43:403.
Blotevogel S, Oliva P, Sobanska S, Viers J, Vezin H, Audry S, et al. The fate of Cu pesticides in vineyard soils: a case study using d 65 Cu isotope ratios and EPR analysis. Chem. Geol. 2018; 477, 35–46.
Blotevogel S, Schreck E, Audry S, Saldi G, Viers J, Courjault-Radé P, et al. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy). Geoderma. 2019; 343, 72–85.
Antoniadis V, Golia E, Liu Y, Wang S, Shaheen S, y Rinklebe J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos. Greece Environ Int. 2019; 124:79–88.
Memon A, y Schroder P. Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut R. 2009; 16:162–175.
Singh H, Mahajan P, Kaur S, Batish D, y Kohli R. Chromium toxicity and tolerance in plants. Environ Chem Lett. 2013; 11:229–254.