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Clasificación de la calidad del agua subterránea utilizada en la agricultura 
mediante aprendizaje automático con datos desbalanceados

En zonas costeras áridas donde la sobreexplotación 
y la intrusión marina amenazan tanto la calidad 
como la disponibilidad del agua subterránea, esta es 
fundamental para la agricultura. Se utilizaron índices 
hidroquímicos y modelos de aprendizaje automático 
(AA) para determinar si el agua subterránea del acuífero 
Caplina (sur de Perú) era apta para el riego. El Índice de 
Calidad del Agua de Riego (ICAR) se calculó utilizando 
siete iones principales: Na⁺, Ca²⁺, Mg²⁺, K⁺, Cl⁻, SO₄²⁻ y 
HCO₃⁻. Este índice también se empleó para entrenar 
algoritmos de clasificación supervisada en un esquema 
binario (zonas críticas y no críticas). El clasificador 
XGBoost resultó ser el mejor modelo de los evaluados, 
con una puntuación F1 de 0,897, un área bajo la curva 
ROC (AUC-ROC) de 0,968 y una precisión de 0,927 
mediante validación cruzada dejando uno fuera (n = 
41). El análisis de sensibilidad reveló que los predictores 
más efectivos fueron Na⁺, Ca²⁺, Mg²⁺ y K⁺. Esto significa 
que el intercambio iónico y la congelación del agua 
ocurrieron simultáneamente. La precisión del modelo 
se mantuvo estable, ya que el número de predicciones 
disminuyó de siete a cuatro iones, mientras que el 
costo del monitoreo se redujo hasta en un 43 %. Esto 
demuestra que la red hidrológica puede mejorarse. Una 
combinación de modelado basado en datos y análisis 
geoquímico reveló indicios tempranos de salinización 
del agua en la zona costera del estuario. Este resultado 
demuestra la eficacia de los enfoques basados en 
aprendizaje automático (ML) como sistemas de alerta 
temprana para la exploración de aguas subterráneas en 
áreas con recursos limitados.

Palabras clave: Calidad del agua subterránea; Agua 
de riego; Aprendizaje automático; Acuífero Caplina; 
Agricultura

RESUMEN
Nas zonas costeiras secas, onde o uso excessivo e a 
intrusão marinha ameaçam tanto a qualidade como a 
disponibilidade da água, as águas subterrâneas são de 
importância primordial para a agricultura. Utilizámos 
índices hidroquímicos e modelos de aprendizagem 
automática (ML) para determinar se a água subterrânea 
do aquífero Caplina (sul do Peru) era adequada para 
a irrigação. O Índice de Qualidade da Água para Rega 
(IWQI) foi calculado utilizando sete iões principais: Na⁺, 
Ca²⁺, Mg²⁺, K⁺, Cl⁻, SO₄²⁻ e HCO₃⁻. Foi também utilizado 
para treinar algoritmos de classificação supervisionada 
num esquema binário (zonas críticas e não críticas). 
O classificador XGBoost apresentou o melhor 
desempenho global entre os modelos testados, com 
uma pontuação F1 de 0,897, uma pontuação ROC-AUC 
de 0,968 e uma precisão de 0,927 através de validação 
cruzada leave-one-out (n=41). A análise de sensibilidade 
revelou que os preditores mais eficazes foram o Na⁺, 
Ca²⁺, Mg²⁺ e K⁺. Isto significa que a permuta iónica e 
o congelamento da água ocorreram simultaneamente. 
A precisão do modelo manteve-se estável, dado que o 
número de previsões diminuiu de sete para quatro iões, 
enquanto o custo da monitorização foi reduzido até 
43%. Isto demonstra que a rede hidrológica pode ser 
melhorada. Uma combinação de modelação baseada 
em dados e análise geoquímica revelou sinais precoces 
de salinização da água na zona costeira do estuário. 
Este resultado demonstra a eficácia das abordagens 
baseadas em machine learning (ML) como sistemas de 
alerta precoce para a exploração de águas subterrâneas 
em áreas com recursos limitados.

Palavras-chave: Qualidade da água subterrânea; Água 
para rega; Aprendizagem de máquina; Aquífero Caplina; 
Agricultura

RESUMO
In dry coastal areas where overuse and marine intrusion 
threaten both quality and availability, groundwater is 
very important for farming.  We used hydrochemical 
indices and machine learning (ML) models to find out if 
the groundwater in the Caplina aquifer (southern Peru) 
was good for irrigation. The Irrigation Water Quality Index 
(IWQI) was calculated using seven major ions: Na⁺, Ca²⁺, 
Mg²⁺, K⁺, Cl⁻, SO₄²⁻, and HCO₃⁻. It was also used to train 
supervised classification algorithms in a binary scheme 
(critical and non-critical zones). The XGBoost classifier 
was the best overall model tested, with an F1 score 
of 0.897, a ROC-AUC score of 0.968, and an accuracy 
score of 0.927 via leave-one-out cross-validation 
(n = 41). Sensitivity analysis revealed that the most 
effective predictors were Na⁺, Ca²⁺, Mg²⁺, and K⁺.  This 
means that ion exchange and water freezing occurred 
simultaneously. The model accuracy remained stable, 
as the number of predictions decreased from seven to 
four ions, while the monitoring cost was reduced by up 
to 43%. This shows that the hydrological network can 
be improved. A combination of data-driven modeling 
and geochemical analysis revealed early signs of water 
salinization in the coastal zone of the estuary. This result 
demonstrates the effectiveness of machine learning 
(ML)-based approaches as early warning systems for 
groundwater exploitation in resource-limited areas.

Key words: Groundwater Quality; Irrigation Water; 
Machine learning; Aquifer Caplina, Agriculture
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INTRODUCTION

Water resources are crucial for economic and 

social development worldwide, particularly in arid 

and semi-arid regions. In these areas, groundwater 

is often the primary source of water for domestic 

and industrial purposes, particularly agriculture, 

which is the world's largest water consumer (1). 

Unfortunately, over-extraction and human activities 

in coastal aquifers, such as seawater intrusion and 

salt deposition, are leading to ongoing problems 

that pose serious threats to the sustainability of 

our groundwater resources (2).

Furthermore, factors such as land-use change, 

climate variability, and agricultural expansion are 

exacerbating the situation, making water less 

suitable for irrigation and deteriorating water 

quality. These challenges not only threaten 

agricultural productivity but also the integrity of 

the ecosystem as a whole (3,4). Prolonged reliance 

on weak groundwater can damage soil structure 

and fertility, reduce crop yields, and exacerbate 

food security issues. This emphasizes the need for 

rigorous water quality monitoring, assessment, 

and forecasting. To ensure that this important 

resource is managed sustainably (5), to achieve 

this sustainability, multiple chemical assessments 

are required, including sodium absorption rate 

(SAR), residual sodium carbonate (RSC), sodium 

percentage (Na%), permeability index (PI), 

magnesium risk (MR), and Kelly index (KI), to 

evaluate the efficiency of irrigation water use (6). 

One commonly used way to understand 

whether water is good for irrigation is to use 

the Irrigation Water Quality Index (IWQI), which 

combines multiple chemical parameters into a 

simple value. This method allows water managers 

to make sense of complex data sets and use them 

more easily for decision-making (7). In the past 

decade, machine learning (ML) techniques have 

been very useful in water chemistry research, as 

they increase the accuracy and adaptability of 

predictions by dealing with non-linear relationships 

and limited or ambiguous data sets (8,9). In a 

comparison of the two previously mentioned 

methods, the tree ensemble- based models 

demonstrated superior performance in predicting 

and classifying water quality, with special emphasis 

on sparse or irregular databases (10,11).

The Caplina aquifer, located in the extreme 

south of Peru, on the border with Chile and within 

the arid environment of the Atacama Desert, 

is the main source of water supply for human 

consumption and agriculture in the Tacna region. 

The expansion of the agricultural frontier — 

primarily olive cultivation —has increased water 

extraction, exacerbating the problems of marine 

intrusion and salinity observed in previous studies 

(12-14). All of these conditions reinforcement the 

need to develop predictive tools that integrate 

hydrochemical indicators and machine learning 

algorithms to support sustainable management 

and decision-making regarding groundwater use.
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Therefore , the objectives of this study are: 

(i) to assess the hydrochemical composition 

and suitability of  groundwater  for irrigation 

using indices and  graphical  interpretations,  (ii) 

to analyze the associations  between  water 

quality parameters to identify processes related 

to salinization and overexploitation, and ( iii ) 

to design machine learning-based classification 

models capable of predicting irrigation water 

suitability in a binary classification : critical zone 

and non- critical zone.

In addition, hydrochemical monitoring es 

being optimized, Evaluating reduced subsets of 

parameters (from two to seven) that maintain 

predictive capacity and reduce analysis costs. 

To our knowledge, this es the first study to 

combine hydrochemical approaches and artificial 

intelligence in the Caplina here, providing a 

scientific basis for more efficient and sustainable 

water resource coastal management arid areas.

METHODOLOGY

In this sense, the field campaign consisted   of 

the   sampling   of   41   wells   Figure 1,   from 

the   Caplina   aquifer in September 2022. 

Before sampling,   five volumes of water were 

extracted from each well. The following in situ 

measurements were made on water parameters: 

pH, dissolved oxygen (DO), electrical conductivity 

(EC), temperature, salinity, and total dissolved 

solids using a pre-calibrated YSI ProQuatro 

multiparameter. Samples were collected in pre-

washed and rinsed 4-liter polyethylene bottles, 

filling them completely without leaving headspace 

to avoid bubbles. After that, samples were 

transported in ice-filled coolers to the laboratory 

at Jorge Basadre Grohmann University in Tacna.
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Figura 1. Map showing the location of the study area and distribution of wells in he aquifer Caplina, Tacna, Peru. Note. Panel 
(a) shows the location of southern Peru and the Atacama Desert. Panel (b) represents the area of the Caplina aquifer in a 3D 

view. Panel (c) presents the location of 41 sampled wells in agricultural areas. Prepared by the authors.
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The Caplina aquifer is located in southern 

Peru, primarily  in the La Yarada district of Tacna 

province, and extends into northern Chile. This 

aquifer is an important source of groundwater for 

agricultural use and is located in a semi-arid region 

facing significant challenges related to water 

resource  management due to overexploitation 

and marine intrusion (15).

The region has an arid coastal climate, with 

average annual rainfall of barely 6 mm and 

temperatures ranging between 18 °C and 20 °C 

(12, 15). Recharge originates mainly from rainfall 

and river infiltration, particularly from the Caplina 

and Uchusuma Rivers, whose headwaters lie in the 

Andean highlands where precipitation may reach 

up to 350 mm yr⁻¹ (14).

In the laboratory, water samples were filtered 

using 0.45 μm pore-size membranes on the same 

day of collection. Bicarbonates were measured 

in unfiltered samples by titration to a pH of 4.3. 

All filtered samples were divided into different 

pre-washed and pre-rinsed polyethylene bottles: 

a 200 mL aliquot for the determination of major 

anions and another 200 mL aliquot preserved with 

ultrapure nitric acid (pH < 2) for the analysis of 

major and trace elements (16).

Major ions  and   trace   elements   were   

analyzed at the University of Waterloo 

Environmental Isotope Laboratory (UW-EIL), 

Canada. Major cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺, B, 

Si) and trace elements (Li⁺, Rb⁺, Cs⁺, Mo, Sr²⁺, Ba²⁺, 

Zr, Sb, As, and U) were measured by inductively 

coupled plasma mass spectrometry (ICP-MS) using 

a Perkin Elmer Sciex Elan 9000. Major anions (F⁻, 

Cl⁻, Br⁻, NO₃⁻, and ) were analyzed by ion 

chromatography using a Dionex   ICS 1600 (16). 

The charge imbalance ranged between 0.1% and 

6%. The saturation   index (SI) of the   mineral   

phases   in   the   groundwater was determined 

using PHREEQC software (17). To verify the 

accuracy of the ICP-MS analyses, the international 

standard IV-STOCK-1643 (trace metals in water) 

was used. The relative differences between the 

standard measurements and the certified values 

of the elements  considered   in   this study ranged 

between 0% and 11.8%.

Approach for evaluating groundwater 

quality in arid environments

The unweighted arithmetic water quality index 

(WQI UA) is used to reduce a large amount of data 

into numerical values that represent overall water 

quality, with which we can assess the suitability of 

groundwater for irrigation purposes (18).

n
UA i=1

1WQI = qi (1)
n∑

For the  case   study, 6 parameters are used. 

With these, it will be possible to evaluate the 

suitability   of   the groundwater found in the 

aquifer (19).
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Sodium Adsorption Ratio:

( )2+ 2+

NaSAR = (2)
Ca +Mg

2

+

Evaluate the risk of sodification in the soil (20, 21).

Percent Sodium

2 2

Na%Na = 100 (3)
Na

K
K Ca Mg

+ +

+ + + +

 +
× + + 

Indicates the percentage of sodium in relation to 

other cations (20, 21).

Permeability Index

-
3

2+ 2+ +

Na + HCO
PI= 100 (4)

Ca +Mg + Na

+ 
 ×
 
 

Measures soil permeability based on water 

composition (22).

Magnesium Hazard

2+

2+ 2+

MgMH = 100 (5)
Ca +Mg

 
× 

 

Evaluate the risk of magnesium toxicity in the soil 

(23).

Potential Salinity

2-
- 4SOPS=Cl + (6)

2

Measures the salinity potential in water (22).

Kelly Ratio:

+

2+ 2+

NaKR= (7)
Ca +Mg

Water alkalinity indicator (24).

Analysis Hydrochemical 

The hydrochemical analysis was performed 

by characterizing the main cations and anions, 

expressed in meq/L. Descriptive statistics (mean, 

median, minimum, maximum, and standard 

deviation) were calculated to describe the 

variability in ionic composition. Additionally, the 

Pearson correlation between each ion and the 

Water Quality Index (WQI) was evaluated, which 

allowed us to identify the parameters with the 

greatest influence on groundwater quality and 

justify the subsequent selection of variables in the 

prediction models (25,26-30).

The Piper diagram will then be constructed 

with an ionic balance within a range of (< ±5%) 
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ensuring reliability. (25). This tool is widely used 

to classify facies and represent in a single graph 

the relative composition of the main cations 

and anions, facilitating the identification of the 

hydrochemical characteristics of an aquifer and 

the understanding of processes that influence its 

evolution (26).

In this study, the carbonate ion was 

obtained from the bicarbonate HCO 3- and pH 

values by using the temperature field-adjusted 

dissociation constant pK2, which ensured a more 

accurate representation of the anionic composition 

in the diagram (26).

2

2
3 ( )

2
3

10 (8)pH pKCO
HCO

−
−

−

   =
  

The concentration es calculated 

by multiplying the   above fraction by the total 

measured baking soda concentration. This 

procedure allows us to obtain the carbonate ion 

needed to complete the speciation of   inorganic 

carbon   and,   therefore, to   create   the   

hydrochemical   diagrams.

Machine Learning Modeling 

Predictive modeling was developed with the 

purpose of classifying groundwater quality in a 

binary classification: critical zone and non- critical 

zone, according to the values of the irrigation 

water quality IWQI index. Supervised learning 

algorithms were applied, selected for their ability 

to handle non-linear relationships, small data 

sets and possible imbalances between classes (8, 

32). The models used were: Random Forest (RF), 

Extreme Gradient Boosting (XGBoost), Gradient 

Boosting (GB), Support Vector Regression (SVR) 

and K- Nearest Neighbors (KNN) (28, 30).

The   XGBoost   and   Gradient   Boosting   

models   are   models   that   focus   on   the   

principle of sequentially assembling decision 

trees, revising previous predictions to iteratively 

correct errors. This   process   allows complex   

relationships   between hydrochemical variables 

and IWQI to be found with high accuracy (28). 

The algorithms mentioned combine regularization 

mechanisms to avoid overfitting, demonstrating 

superior performance in the classification of 

environmental data   with high collinearity and 

reduced sample size (27, 31). The SVR model, in 

contrast, was employed as both a linear and non-

linear alternative, utilizing kernel functions, to 

assess its generalization capability in comparison 

to ensemble   models   (32).   Finally, the KNN 

was used as a distance-based reference, taking 

into account the weighted average of the closest 

neighbors based on the best number of k, which 

was found through experimentation (29).

Because the sample size was small, leave-one-

out (LOO) cross-validation   was used this means 

that the model was trained with n–1 observations 
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and evaluations, repeat the process until all 

samples are   included   by adding the item with 

the remaining observations and this method 

lessens bias and lets the model's predictive power 

be tested in a strong way (11). A standard scaling 

pipeline was used in each validation iteration 

for the SVR and KNN algorithms to avoid data 

leakage. The tree-based models, On the other 

hand, this  approach   is   not scalable because it 

does not reduce the size of the variables, as non-

critical categories have more samples than critical 

categories. Automatically assigning class weights 

(class weights = "balanced") and adjusting the 

decision criteria increase the model's sensitivity to 

critical areas (minority categories). This approach 

facilitates identification of the most critical 

scenarios for appropriate resource management 

(10).

To improve water chemistry monitoring, 

Pearson correlation analysis and variable 

importance analysis are used to analyze groups 

of 2-7 variables. This approach allows us to 

understand how the number of parameters used 

affects the model's ability to accurately predict 

water quality.

Evaluation Metrics in Water Quality 

Classification Models 

We used classification parameters to 

evaluate the performance of machine learning 

models for groundwater quality detection. Due 

to class heterogeneity in the dataset, minority 

population-specific measures are preferred 

over general accuracy (28, 33). These include 

precision, sensitivity or recall, F1 score, ROC-AUC, 

and PR-AUC. These parameters were adopted 

because, using these, model performance could 

be evaluated even when a special component is 

unmatched, (34, 35).

Accuracy is the proportion   of samples 

correctly classified   as a class greater than all 

predicted values for that class. Clearly, it is a 

positive diagnosis. Sensitivity/memory represents 

the proportion of correctly identified nodes by the 

model out of the total number of nodes for that 

class. This becomes important in water resources 

management because the failure to identify 

critical areas (which is false negatives) will lead to 

improper irrigation decisions (35, 31). The F1 score 

represents a   simultaneous average of precision 

and sensitivity;   this   quantifies   both measures and 

thus makes the model suitable for evaluation under 

non-equilibrium conditions (33). Also, ROC-AUC 

and PR-AUC values were computed based on the 

classification   ability. While the former computes 

the competency of the model in distinguishing 

between groups in different decisions, the latter 

provides valuable information in cases of intra-

class inconsistency, reflecting the accuracy gained 

with increasing representation of the dominant 
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class (10). Then we use the confusion matrix as a 

representation of true positives and false positives 

and negatives.

Model Validation

Model performance was used to evaluate 

the model and also to make sure that there 

is no overfitting and the results obtained are 

reproducible. The dataset was small, and 

hydrochemical parameters varied; hence, this 

process was repeated until all observations were 

included, resulting   in more accurate and less 

biased estimates of the total error (32, 35). LOO 

validation is ideal for environmental studies with 

limited datasets because it allows one to make 

use of all the available information while   still   

separating the data into training and test sets (17, 

28). The scale-sensitive models, including SVR 

and ANN, have been implemented at the pre-

processing step. 

This pre-processing used a predefined scale 

at each validation iteration to avoid data leakage 

and ensure that only the training data were 

used to derive normalization   statistics. We did 

not prescale tree models such as XGBoost and 

Gradient   Boosting   since both are insensitive 

to the variability of the variables (8, 27, 28). We 

evaluated the models using bootstrap uncertainty 

analysis with 1000 random iterations. This allowed 

us to determine the confidence intervals of the 

most important metrics: accuracy, detection, F1 

score,   and ROC-AUC. Also, 1000 random prediction 

iterations were performed in determining the 

confidence interval   of   the critical metrics: 

accuracy, detection, F1 score, and ROC-AUC. This 

method allowed us to assess the robustness of each 

model to variations in the data and to statistically 

compare its performance across algorithms (10, 

33). We derived the final performance metric 

from the mean of the validation test along with its 

standard deviation and confidence interval (27). 

This procedure allowed the identification of the 

best predictive model and the determination of 

the degree of its change with changes in training 

data.

Importance of Variables and Mapping

Mapping and Importance of Variables we used 

explainability analysis and feature importance 

analysis to figure out which hydrochemical 

variables had the biggest impact on separating the 

Caplina aquifer into critical and non-critical zones 

(29). To find out which hydrochemical factors 

had the biggest impact on separating critical and 

non-critical areas in the Caplina aquifer. The two 

methods for determining feature importance 

employed are permutation importance, which 

looks at the effect of each variable on the model's 

accuracy, and gain-based importance derived 

from ensemble   techniques (31, 32). In tree-
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based models (XGBoost and Gradient Boosting), 

the importance   was estimated   by quantifying 

either the performance penalty   associated with 

permuting each variable or by measuring   gain 

contribution at the node, a   widely   used   approach 

in current water   quality   studies (11, 31). The 

results point out that the most informative ions are 

Na⁺, Ca²⁺, Mg²⁺, and K⁺, although Cl⁻ is relegated 

to a lower position   because of its high collinearity 

with Na⁺ (r > 0.95). Sodium is the dominant 

explanatory variable within   the framework of 

salinization processes (11, 31, 33).

The relevance of Ca²⁺ and Mg²⁺ is consistent 

with ion exchange and carbonate dissolution 

processes, while K⁺ serves as a complementary 

marker linked to agricultural practices and 

anthropogenic enrichment (11, 12).

To improve the individual interpretability 

of the forecasts, the SHAP (Shapley Additive 

Planations) method was applied. This method 

allows us to visualize the marginal effect (direction 

and magnitude) of each ion on the probability 

of entering the critical class, thus supporting the 

tractability of the model for management (33, 35). 

Finally, binary classification maps were developed 

in QGIS to represent the spatial distribution of 

the influencing   variables   and the delimitation 

of critical and non- critical zones, facilitating 

the prioritization of vulnerable areas and the 

optimization of monitoring with a reduced set 

of parameters   without substantial loss of 

performance (30).

DEVELOPMENT AND DISCUSSION

Water Quality Assessment using IWQIUA

In the Table 1, summarizes the distribution of 

wells by IWQI-UA category and their operational 

aggregation for the binary model. It is observed 

that “Excellent” = 16 wells and “Good” = 11 wells, 

which together make up the NON-CRITICAL ZONE 

(n = 27), while “Bad” = 8, “Very bad” = 3 and “Not 

suitable” = 3 make up the CRITICAL ZONE (n = 14), 

configuring a moderate imbalance that justifies 

prioritizing metrics sensitive to the minority class 

in the   evaluation   of   the   classifier,   such   as   

recall, F1 and PR-AUC. This binary partition adopts 

an IWQI threshold > 50 to define critical condition 

(Poor, Very Poor and Unsuitable), consistent 

with the practice reported in irrigation water 

assessments in arid and coastal environments 

(6,7).
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WQI UA Number of Wells
Excellent 16 NON-CRITICAL ZONE (69.8%)
Good 11
Bad 8 CRITICAL ZONE (30.2%)
Very Bad 3
Not Suitable 3

Table 1. Distribution  of  wells  by IWQI-UA category and their operational aggregation for the binary 
model.

Hydrochemical Facies

The Piper diagram Figure 2, shows a system 

in evolution hydrochemistry (15). In the Table 2, 

group uncritical concentrated towards carbonate 

facies (Ca–Mg–HCO₃), indicative of recharge 

waters, and a gradient progressive towards saline 

facies in minor proportion (Na–Cl) where they are 

located samples reviews (“Bad”, “Very bad”, “Not 

suitable”), consistent with marine intrusion and 

salinization in the coastal sector (39, 40).

Note. The binary classification representing 69.8% and 30.2% of the total   wells, respectively.

Table 2. Group uncritical concentrated towards carbonate facies.

Hydrochemical facies Percentage Type Interpretation

Ca–Mg–HCO3 68% Dominant Recharge waters, low TDS, dominate in the middle- upper zone of 
the aquifer.

Ca–Na–HCO3 –Cl  (mixed) 22% Transition They indicate exchange ionic progressive (Na⁺ replacing Ca²⁺), 
typical in stages salinization initials.

Na–Cl 10% Minority Represents wells further close to the coast, affected by marine 
mixing and overexploitation.

Note. The predominance of Ca–Mg–HCO₃ indicates recharge waters of low salinity, while the Na–Cl facies near the coast reflect progressive 
salinization and seawater intrusion processes.
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Figura 2. Shows a system in evolution hydrochemistry. Note. The facies were classified based on major ion dominance
using Piper diagram interpretation. Preparation Own using EXCEL.

The cationic triangle show a dominance of 

(Na⁺, K⁺) and a relative depletion of Ca²⁺, a pattern 

compatible with ion exchange (replacement of 

Ca²⁺ by Na⁺ in the exchange matrix), while in the 

anionic triangle an increase in Cl⁻ and a decrease 

in HCO₃⁻ + CO₃²⁻ are observed, reinforcing the 

marine/evaporite mixing signal (36, 38). Estimating 

CO₃²⁻ from HCO₃⁻ and pH using pK₂(T) allowed for 

adequate representation of the carbonate vortex 

and improved sample projection in the diamond 

field, which is critical in waters with high pH (25).
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Classification binary and performance of 

learning models automatic

Machine learning algorithms evaluated in the 

Figure 3, This   research   incorporated RF,   SVM, 

KNN   and   XGBoost   (30, 32). The best models 

had F1 scores   between   0.88   and   0.90   and   

ROC-AUC scores   above   0.96. This means they 

were very good at telling the difference between 

important   and   unimportant   areas   where   

XGBoost   model stood out in particular with an 

F1 score of 0.897 and a ROC-AUC of 0.968 so this 

means that it is both   accurate   and sensitive, and it 

can also handle class imbalance (8, 33). Sensitivity 

analysis Figure 4, Shows that the Random Forest 

and XGBoost   models correctly   detected   more   

than 90% of the important samples. The SVM 

model did the same, but with less variance (Recall 

= 0.86.

Figura 3. Machine learning algorithms evaluated. Note. Elaboration own from the results obtained
in Python (Google Colab, 2025).

Figura 4. Sensitivity analysis. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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The ROC-AUC comparison Figure 5, indicates 

that ensemble-based models (Random Forest and 

XGBoost) maintained the highest discrimination 

areas (AUC = 0.966 and 0.968, respectively), 

followed by SVM (AUC = 0.974) and KNN (AUC = 

0.943), confirming excellent separability between 

classes (30, 34).

Figura 5. The ROC-AUC comparison. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

The confusion matrices Figure 6, confirm that 

the best-performing classifiers produced very few 

type II errors (false negatives). For XGBoost, 26 out 

of 27 non-critical wells and 13 out of 14 critical 

wells were correctly classified this corresponds to 

an overall accuracy of over 94%. The performance 

demonstrates that the model generalizes well 

even in a moderately unbalanced sample without 

overfitting.

Figura 6. The confusion matrices . Note. Elaboration own from the results obtained in Python (Google Colab , 2025).
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Analysis detailed model XGBoost

The confusion matrices Figure 7, confirm that 

the best-performing classifiers produced very few 

type II errors (false negatives). For XGBoost, 26 out 

of 27 non-critical wells and 13 out of 14 critical wells 

were  correctly classified;  this  corresponds  to an 

overall accuracy of over 94%. The performance 

demonstrates that the model generalizes well 

even in a moderately unbalanced sample without 

overfitting (34).

Figura 7. Analysis detailed model XGBoost. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

The probability distribution in Figure 8, makes 

it easy to tell the difference between classes: 

most non-critical samples are below 0.3, and most 

critical samples are above 0.7. The best balance 

between recall and precision was found by setting 

the decision-bound threshold to 0.5. This value 

provided the best balance between recall and 

precision. This means that the model can be used 

as an early warning system to detect deterioration 

in groundwater quality. The sensitivity-accuracy 

curve Figure 9, confirms this result and shows 

an average precision (AP) of 0.931, indicating 

excellent diagnostic performance despite the lack 

of agreement between the datasets and the mean 

(33, 8). These results indicate the high sensitivity of 

the model in spotting key conditions (8) with great 

values: Non-Critical Zone: precision = 0.962, recall 

= 0.926. Critical Zone: precision = 0.867, recall = 

0.929.
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Figura 8. The probability distribution. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Comparative Evaluation

Evaluating Comparisons Figure 9, shows the 

performance heatmap, which gives an overview 

of the results of all classifiers. XGBoost, Random 

Forest, and SVM showed the most consistent 

performance across all metrics, with values above 

0.85 for precision, recall, F1-score, and ROC-AUC. 

KNN, on the other hand, had a lower recall (0.786), 

which demonstrated their higher likelihood of 

overfitting on small datasets (33). The plot Figure 

10, shows that the top three models are very 

similar as their accuracy, precision, and ROC-AUC 

are almost the same. XGBoost, on the other hand, 

had a slightly higher recall (0.93), which is useful 

for finding important areas with few false negatives 

(34). Overall, these results confirm that ensemble-

based analysis algorithms are robust because they 

balance interpretability and predictive power 

better than distance (8, 30).
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Figura 9. Comparative Evaluation. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Figura 10. Radar comparision top models. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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Variable Reduction and Tracking 

Improvement

The incremental   ROC analysis Figure 11, shows 

that the  Random Forest   model   maintains AUC 

values above 0.94 even when only two features 

are used. This demonstrates the robustness of the 

model. The performance-cost ratio   Figure 12, shows 

that the best   configuration is the one with Na⁺, 

Ca²⁺, HCO₃⁻ and K⁺, which  reduces monitoring costs 

by 43% without losing accuracy. The performance 

curve shows that the predictive capacity stabilizes 

when four hydrochemical variables are added, 

with AUC = 0.960. This combination captures both 

the signature carbonate recharge (Ca–HCO₃) and 

marine salinization trend (Na–Cl), strengthening 

the predictions and chemical consistency of the 

model (9, 2).

Figura 11. The incremental ROC analysis. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Figura 12. The performance-cost ratio. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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Finally, the spatial map Figure 13, shows the 

results of the binary classification. It shows that 

nearshore wells are located in Critical Zones, which 

is consistent with what was observed in the field 

and what was learned from hydrogeochemical 

indicators of marine intrusion. The feature 

importance ranking supports these results by 

showing that Na⁺ is the most important predictor, 

followed by (Ca²⁺, Mg²⁺, K⁺).

Figura 13. Classification map binary. Nota. Spatial distribution map of groundwater quality index (WQI-UA) in the Caplina aquifer, 
southern Peru.The map shows Critical areas (red–orange tones) are concentrated near the coast, influenced by seawater mixing

and over-extraction, whereas non-critical areas (blue–cyan tones) correspond to recharge zones of better quality.

CONCLUSION

Integrating machine-learning models with 

hydrochemical indicators proved effective for 

assessing and predicting groundwater quality in 

a dry coastal aquifer such as Caplina. Ensemble 

methods, particularly XGBoost and Random 

Forest, achieved the strongest class separation 

under class imbalance, with F1 scores > 0.89 and 

ROC-AUC > 0.96, in line   with recent evidence 

on the advantages of boosting/bagging for non-

linear groundwater problems (31, 30, 8). From the 

hydrochemical standpoint, Na⁺, Ca²⁺, Mg²⁺ and 
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K⁺ emerged as the most informative predictors, 

reflecting progressive salinization and Na⁺–Ca²⁺ 

ion-exchange processes that typify early stages of 

marine intrusion (2, 12).

Model parsimony analyses showed that 

reducing inputs from seven to four ions (Na⁺, 

Ca²⁺, HCO₃⁻, K⁺) preserved   high  performance 

(F1 = 0.897; AUC = 0.960) while lowering 

monitoring costs by 43%, supporting the design 

of lean observation networks for hydrochemical 

surveillance in resource-constrained settings (7). 

The Piper facies distribution (Ca–Mg–HCO₃: 68%; 

Na–Cl: 10%) is consistent with early salinization 

during the 2022 survey, indicating a transition from 

carbonate-recharge signatures toward coastal 

saline influence as abstraction pressures increase. 

Together, these results provide an operational 

basis to prioritize critical zones and to deploy 

cost-effective monitoring guided by a minimal, yet 

chemically coherent, set of ions.
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