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RESUMEN

En zonas costeras daridas donde la sobreexplotacion
y la intrusion marina amenazan tanto la calidad
como la disponibilidad del agua subterranea, esta es
fundamental para la agricultura. Se utilizaron indices
hidroquimicos y modelos de aprendizaje automatico
(AA) para determinar si el agua subterranea del acuifero
Caplina (sur de Peru) era apta para el riego. El indice de
Calidad del Agua de Riego (ICAR) se calculé utilizando
siete iones principales: Na*, Ca?*, Mg?*, K*, CI", SO,*" y
HCO;". Este indice también se empled para entrenar
algoritmos de clasificacion supervisada en un esquema
binario (zonas criticas y no criticas). El clasificador
XGBoost resulto ser el mejor modelo de los evaluados,
con una puntuacion F1 de 0,897, un drea bajo la curva
ROC (AUC-ROC) de 0,968 y una precision de 0,927
mediante validacion cruzada dejando uno fuera (n =
41). El andlisis de sensibilidad revel6 que los predictores
mas efectivos fueron Na*, Ca?*, Mg?* y K*. Esto significa
que el intercambio idnico y la congelacion del agua
ocurrieron simultdneamente. La precision del modelo
se mantuvo estable, ya que el nimero de predicciones
disminuyd de siete a cuatro iones, mientras que el
costo del monitoreo se redujo hasta en un 43 %. Esto
demuestra que la red hidroldgica puede mejorarse. Una
combinacién de modelado basado en datos y analisis
geoquimico reveld indicios tempranos de salinizacion
del agua en la zona costera del estuario. Este resultado
demuestra la eficacia de los enfoques basados en
aprendizaje automatico (ML) como sistemas de alerta
temprana para la exploracion de aguas subterraneas en
dreas con recursos limitados.

Palabras clave: Calidad del agua subterrdnea; Agua
de riego; Aprendizaje automatico; Acuifero Caplina;
Agricultura

Basthean Pino-Cabezas! ®

bpinoc@unjbg.edu.pe

Edilberto Mamani-Lopez' ®

emamanil@unjbg.edu.pe

Edwin Pino-Vargas? ®
epinov@unjbg.edu.pe
Edgar Taya-Acosta® ®
etayaa@unjbg.edu.pe

Fredy Cabrera-Olivera* ®
fcabrerao@unjbg.edu.pe

!Faculty of Engineering, Academic Department of Chemistry and Chemical Engineering,

Universidad Nacional Jorge Basadre Grohmann. Tacna, Peru

“Department of Civil Engineering, Jorge Basadre Grohmann National University. Tacna, Peru
’Department of Computer Engineering and Systems, Jorge Basadre Grohmann National University, Tacna, Pera
‘Department of Geological Engineering-Geotechnics, Jorge Basadre National University. Tacna, Peru

Articulo recibido: 16 de octubre 2025 / Arbitrado: 24 de noviembre 2025 / Publicado: 7 de enero 2026

ABSTRACT

In dry coastal areas where overuse and marine intrusion
threaten both quality and availability, groundwater is
very important for farming. We used hydrochemical
indices and machine learning (ML) models to find out if
the groundwater in the Caplina aquifer (southern Peru)
was good for irrigation. The Irrigation Water Quality Index
(IwQl) was calculated using seven major ions: Na*, Ca%*,
Mg?*, K*, CI-, SO,27, and HCOs™. It was also used to train
supervised classification algorithms in a binary scheme
(critical and non-critical zones). The XGBoost classifier
was the best overall model tested, with an F1 score
of 0.897, a ROC-AUC score of 0.968, and an accuracy
score of 0.927 via leave-one-out cross-validation
(n = 41). Sensitivity analysis revealed that the most
effective predictors were Na*, Ca?*, Mg?*, and K*. This
means that ion exchange and water freezing occurred
simultaneously. The model accuracy remained stable,
as the number of predictions decreased from seven to
four ions, while the monitoring cost was reduced by up
to 43%. This shows that the hydrological network can
be improved. A combination of data-driven modeling
and geochemical analysis revealed early signs of water
salinization in the coastal zone of the estuary. This result
demonstrates the effectiveness of machine learning
(ML)-based approaches as early warning systems for
groundwater exploitation in resource-limited areas.

Key words: Groundwater Quality; Irrigation Water;
Machine learning; Aquifer Caplina, Agriculture

RESUMO

Nas zonas costeiras secas, onde o uso excessivo e a
intrusdo marinha ameagam tanto a qualidade como a
disponibilidade da agua, as aguas subterraneas sdo de
importancia primordial para a agricultura. Utilizdmos
indices hidroquimicos e modelos de aprendizagem
automatica (ML) para determinar se a agua subterranea
do aquifero Caplina (sul do Peru) era adequada para
a irrigagdo. O Indice de Qualidade da Agua para Rega
(IwQl) foi calculado utilizando sete ides principais: Na*,
Ca?*, Mg?*, K*, CI", SO,%~ e HCO;". Foi também utilizado
para treinar algoritmos de classificagdo supervisionada
num esquema bindrio (zonas criticas e ndo criticas).
O classificador XGBoost apresentou o melhor
desempenho global entre os modelos testados, com
uma pontuagdo F1 de 0,897, uma pontuagdo ROC-AUC
de 0,968 e uma precisdo de 0,927 através de validagdo
cruzada leave-one-out (n=41). A analise de sensibilidade
revelou que os preditores mais eficazes foram o Na*,
Ca**, Mg?* e K*. Isto significa que a permuta idnica e
o congelamento da agua ocorreram simultaneamente.
A precisdo do modelo manteve-se estdvel, dado que o
numero de previsGes diminuiu de sete para quatro ides,
enquanto o custo da monitorizagdo foi reduzido até
43%. Isto demonstra que a rede hidroldgica pode ser
melhorada. Uma combinagdo de modelagdo baseada
em dados e analise geoquimica revelou sinais precoces
de salinizagdo da agua na zona costeira do estuario.
Este resultado demonstra a eficdcia das abordagens
baseadas em machine learning (ML) como sistemas de
alerta precoce para a exploragdo de dguas subterraneas
em dreas com recursos limitados.

Palavras-chave: Qualidade da 4gua subterranea; Agua
para rega; Aprendizagem de maquina; Aquifero Caplina;
Agricultura
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INTRODUCTION

Water resources are crucial for economic and
social development worldwide, particularly in arid
and semi-arid regions. In these areas, groundwater
is often the primary source of water for domestic
and industrial purposes, particularly agriculture,
which is the world's largest water consumer (1).
Unfortunately, over-extractionand human activities
in coastal aquifers, such as seawater intrusion and
salt deposition, are leading to ongoing problems
that pose serious threats to the sustainability of
our groundwater resources (2).

Furthermore, factors such as land-use change,
climate variability, and agricultural expansion are
exacerbating the situation, making water less
suitable for irrigation and deteriorating water
quality. These challenges not only threaten
agricultural productivity but also the integrity of
the ecosystem as a whole (3,4). Prolonged reliance
on weak groundwater can damage soil structure
and fertility, reduce crop yields, and exacerbate
food security issues. This emphasizes the need for
rigorous water quality monitoring, assessment,
and forecasting. To ensure that this important
resource is managed sustainably (5), to achieve
this sustainability, multiple chemical assessments
are required, including sodium absorption rate
(SAR), residual sodium carbonate (RSC), sodium
percentage (Na%), permeability index (PI),

magnesium risk (MR), and Kelly index (Kl), to

evaluate the efficiency of irrigation water use (6).
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One commonly used way to understand
whether water is good for irrigation is to use
the Irrigation Water Quality Index (IWQl), which
combines multiple chemical parameters into a
simple value. This method allows water managers
to make sense of complex data sets and use them
more easily for decision-making (7). In the past
decade, machine learning (ML) techniques have
been very useful in water chemistry research, as
they increase the accuracy and adaptability of
predictions by dealing with non-linear relationships
and limited or ambiguous data sets (8,9). In a
comparison of the two previously mentioned
methods, the tree ensemble- based models
demonstrated superior performance in predicting
and classifying water quality, with special emphasis
on sparse or irregular databases (10,11).

The Caplina aquifer, located in the extreme
south of Peru, on the border with Chile and within
the arid environment of the Atacama Desert,
is the main source of water supply for human
consumption and agriculture in the Tacna region.
The expansion of the agricultural frontier —
primarily olive cultivation —has increased water
extraction, exacerbating the problems of marine
intrusion and salinity observed in previous studies
(12-14). All of these conditions reinforcement the
need to develop predictive tools that integrate
hydrochemical indicators and machine learning
algorithms to support sustainable management

and decision-making regarding groundwater use.
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Therefore , the objectives of this study are:
(i) to assess the hydrochemical composition

and suitability of groundwater for irrigation
using indices and graphical interpretations, (ii)
to analyze the associations between water
quality parameters to identify processes related
to salinization and overexploitation, and ( iii )
to design machine learning-based classification
models capable of predicting irrigation water
suitability in a binary classification : critical zone
and non- critical zone.

In addition, hydrochemical monitoring es
being optimized, Evaluating reduced subsets of
parameters (from two to seven) that maintain
predictive capacity and reduce analysis costs.
To our knowledge, this es the first study to
combine hydrochemical approaches and artificial
intelligence in the Caplina here, providing a
scientific basis for more efficient and sustainable

water resource coastal management arid areas.

METHODOLOGY
In this sense, the field campaign consisted of
from

the sampling of 41 wells Figure 1,

the Caplina aquifer in September 2022.
Before sampling, five volumes of water were
extracted from each well. The following in situ
measurements were made on water parameters:
pH, dissolved oxygen (DO), electrical conductivity
(EC), temperature, salinity, and total dissolved
solids using a pre-calibrated YSI ProQuatro
multiparameter. Samples were collected in pre-
washed and rinsed 4-liter polyethylene bottles,
filling them completely without leaving headspace
to avoid bubbles. After that, samples were
transported in ice-filled coolers to the laboratory

at Jorge Basadre Grohmann University in Tacna.
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Figura 1. Map showing the location of the study area and distribution of wells in he aquifer Caplina, Tacna, Peru. Note. Panel
(a) shows the location of southern Peru and the Atacama Desert. Panel (b) represents the area of the Caplina aquifer in a 3D
view. Panel (c) presents the location of 41 sampled wells in agricultural areas. Prepared by the authors.
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The Caplina aquifer is located in southern
Peru, primarily in the La Yarada district of Tacna
province, and extends into northern Chile. This
aquifer is an important source of groundwater for
agricultural use and is located in a semi-arid region
facing significant challenges related to water
resource  management due to overexploitation
and marine intrusion (15).

The region has an arid coastal climate, with
average annual rainfall of barely 6 mm and
temperatures ranging between 18 °C and 20 °C
(12, 15). Recharge originates mainly from rainfall
and river infiltration, particularly from the Caplina
and Uchusuma Rivers, whose headwaters lie in the
Andean highlands where precipitation may reach
up to 350 mm yr™ (14).

In the laboratory, water samples were filtered
using 0.45 um pore-size membranes on the same
day of collection. Bicarbonates were measured
in unfiltered samples by titration to a pH of 4.3.
All filtered samples were divided into different
pre-washed and pre-rinsed polyethylene bottles:
a 200 mL aliquot for the determination of major
anions and another 200 mL aliquot preserved with
ultrapure nitric acid (pH < 2) for the analysis of

major and trace elements (16).

Major ions and trace elements were
analyzed at the University of Waterloo
Environmental Isotope Laboratory (UW-EIL),

Canada. Major cations (Na*, K*, Ca%*, and Mg?**, B,

Si) and trace elements (Li*, Rb*, Cs*, Mo, Sr?*, Ba%*,

Zr, Sb, As, and U) were measured by inductively
coupled plasma mass spectrometry (ICP-MS) using
a Perkin Elmer Sciex Elan 9000. Major anions (F-,
Cl-, Br7, NOs~, and SOi") were analyzed by ion
chromatography using a Dionex ICS 1600 (16).
The charge imbalance ranged between 0.1% and
mineral

6%. The saturation index (SI) of the

phases in the groundwater was determined
using PHREEQC software (17). To verify the
accuracy of the ICP-MS analyses, the international
standard IV-STOCK-1643 (trace metals in water)
was used. The relative differences between the
standard measurements and the certified values

of the elements considered in this study ranged

between 0% and 11.8%.

Approach for evaluating groundwater
quality in arid environments

The unweighted arithmetic water quality index
(WQl UA) is used to reduce a large amount of data
into numerical values that represent overall water
quality, with which we can assess the suitability of

groundwater for irrigation purposes (18).

1

WQIy,=— in:lqi @)
n

For the case study, 6 parameters are used.
With these, it will be possible to evaluate the
suitability of the groundwater found in the

aquifer (19).
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Sodium Adsorption Ratio:

SAR = Na 2)

\/(Ca2++Mg2+)

2

Evaluate the risk of sodification in the soil (20, 21).

Percent Sodium

Na"+K"
Na*+K*+Ca”* Mg™

%Na = ( jxlOO 3)

Indicates the percentage of sodium in relation to

other cations (20, 21).

Permeability Index

PI—[ Na“+,/HCO;

x100 (4
Ca”"+Mg> +Na" @

Measures soil permeability based on water

composition (22).

Magnesium Hazard

Mg2+

MH=| ———— |x100 (5

Evaluate the risk of magnesium toxicity in the soil

(23).

en Ciencias Agronémicas y Veterinarias

Potential Salinity

SO>
2

PS=CI'+

(6)
Measures the salinity potential in water (22).

Kelly Ratio:

Na®

KR=——F——F--+ (7
Ca2++Mg2+ ( )

Water alkalinity indicator (24).

Analysis Hydrochemical

The hydrochemical analysis was performed
by characterizing the main cations and anions,
expressed in meq/L. Descriptive statistics (mean,
standard

median, minimum, maximum, and

deviation) were calculated to describe the
variability in ionic composition. Additionally, the
Pearson correlation between each ion and the
Water Quality Index (WQI) was evaluated, which
allowed us to identify the parameters with the
greatest influence on groundwater quality and
justify the subsequent selection of variables in the
prediction models (25,26-30).

The Piper diagram will then be constructed

with an ionic balance within a range of (< +5%)
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ensuring reliability. (25). This tool is widely used
to classify facies and represent in a single graph
the relative composition of the main cations
and anions, facilitating the identification of the
hydrochemical characteristics of an aquifer and
the understanding of processes that influence its
evolution (26).

In this study, the carbonate ion CO3~ was
obtained from the bicarbonate HCO 3 and pH
values by using the temperature field-adjusted
dissociation constant pK,, which ensured a more
accurate representation of the anionic composition

in the diagram (26).

fior]
3

The (CO%~ concentration es calculated

by multiplying the above fraction by the total

measured baking soda concentration. This
procedure allows us to obtain the carbonate ion
needed to complete the speciation of inorganic

carbon and, therefore, to create the

hydrochemical diagrams.

Machine Learning Modeling

Predictive modeling was developed with the
purpose of classifying groundwater quality in a
binary classification: critical zone and non- critical
zone, according to the values of the irrigation

water quality IWQI index. Supervised learning

algorithms were applied, selected for their ability
to handle non-linear relationships, small data
sets and possible imbalances between classes (8,
32). The models used were: Random Forest (RF),
Extreme Gradient Boosting (XGBoost), Gradient
Boosting (GB), Support Vector Regression (SVR)
and K- Nearest Neighbors (KNN) (28, 30).
Gradient

The XGBoost and Boosting

models are models that focus on the
principle of sequentially assembling decision
trees, revising previous predictions to iteratively
correct errors. This

process allows complex

relationships  between hydrochemical variables
and IWQI to be found with high accuracy (28).
The algorithms mentioned combine regularization
mechanisms to avoid overfitting, demonstrating
superior performance in the classification of
environmental data  with high collinearity and
reduced sample size (27, 31). The SVR model, in
contrast, was employed as both a linear and non-
linear alternative, utilizing kernel functions, to
assess its generalization capability in comparison
to ensemble models (32). Finally, the KNN
was used as a distance-based reference, taking
into account the weighted average of the closest
neighbors based on the best number of k, which
was found through experimentation (29).

Because the sample size was small, leave-one-
out (LOO) cross-validation was used this means

that the model was trained with n—1 observations
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and evaluations, repeat the process until all
samples are included by adding the item with
the remaining observations and this method
lessens bias and lets the model's predictive power
be tested in a strong way (11). A standard scaling
pipeline was used in each validation iteration
for the SVR and KNN algorithms to avoid data
leakage. The tree-based models, On the other
hand, this approach is not scalable because it
does not reduce the size of the variables, as non-
critical categories have more samples than critical
categories. Automatically assigning class weights
(class weights = "balanced") and adjusting the
decision criteria increase the model's sensitivity to
critical areas (minority categories). This approach
facilitates identification of the most critical
scenarios for appropriate resource management
(10).

To improve water

chemistry monitoring,

Pearson correlation analysis and variable
importance analysis are used to analyze groups
of 2-7 variables. This approach allows us to
understand how the number of parameters used
affects the model's ability to accurately predict

water quality.

Evaluation Metrics in Water

Classification Models

Quality

We used classification parameters to

evaluate the performance of machine learning

en Ciencias Agronémicas y Veterinarias

models for groundwater quality detection. Due
to class heterogeneity in the dataset, minority
population-specific measures are preferred
over general accuracy (28, 33). These include
precision, sensitivity or recall, F1 score, ROC-AUC,
and PR-AUC. These parameters were adopted
because, using these, model performance could
be evaluated even when a special component is
unmatched, (34, 35).

Accuracy is the proportion of samples
correctly classified as a class greater than all
predicted values for that class. Clearly, it is a
positive diagnosis. Sensitivity/memory represents
the proportion of correctly identified nodes by the
model out of the total number of nodes for that
class. This becomes important in water resources
management because the failure to identify
critical areas (which is false negatives) will lead to
improper irrigation decisions (35, 31). The F1 score
represents a simultaneous average of precision
and sensitivity; this quantifies both measuresand
thus makes the model suitable for evaluation under
non-equilibrium conditions (33). Also, ROC-AUC
and PR-AUC values were computed based on the
classification ability. While the former computes
the competency of the model in distinguishing
between groups in different decisions, the latter
provides valuable information in cases of intra-

class inconsistency, reflecting the accuracy gained

with increasing representation of the dominant
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class (10). Then we use the confusion matrix as a
representation of true positives and false positives

and negatives.

Model Validation

Model performance was used to evaluate
the model and also to make sure that there
is no overfitting and the results obtained are
reproducible. The dataset was small, and
hydrochemical parameters varied; hence, this
process was repeated until all observations were
included, resulting in more accurate and less
biased estimates of the total error (32, 35). LOO
validation is ideal for environmental studies with
limited datasets because it allows one to make
use of all the available information while  still
separating the data into training and test sets (17,
28). The scale-sensitive models, including SVR
and ANN, have been implemented at the pre-
processing step.

This pre-processing used a predefined scale
at each validation iteration to avoid data leakage
and ensure that only the training data were
used to derive normalization statistics. We did
not prescale tree models such as XGBoost and
Gradient Boosting since both are insensitive
to the variability of the variables (8, 27, 28). We
evaluated the models using bootstrap uncertainty
analysis with 1000 random iterations. This allowed

us to determine the confidence intervals of the

most important metrics: accuracy, detection, F1
score, and ROC-AUC. Also, 1000 random prediction
iterations were performed in determining the
confidence interval of  the critical metrics:
accuracy, detection, F1 score, and ROC-AUC. This
method allowed us to assess the robustness of each
model to variations in the data and to statistically
compare its performance across algorithms (10,
33). We derived the final performance metric
from the mean of the validation test along with its
standard deviation and confidence interval (27).
This procedure allowed the identification of the
best predictive model and the determination of
the degree of its change with changes in training

data.

Importance of Variables and Mapping
Mapping and Importance of Variables we used
explainability analysis and feature importance
analysis to figure out which hydrochemical
variables had the biggest impact on separating the
Caplina aquifer into critical and non-critical zones
(29). To find out which hydrochemical factors
had the biggest impact on separating critical and
non-critical areas in the Caplina aquifer. The two
methods for determining feature importance
employed are permutation importance, which
looks at the effect of each variable on the model's
importance derived

accuracy, and gain-based

from ensemble  techniques (31, 32). In tree-
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based models (XGBoost and Gradient Boosting),
the importance was estimated by quantifying
either the performance penalty associated with
permuting each variable or by measuring gain
contribution atthe node, a widely used approach
in current water quality studies (11, 31). The
results point out that the most informative ions are
Na*, Ca?*, Mg?*, and K*, although CI" is relegated
to a lower position because of its high collinearity
with Na* (r > 0.95). Sodium is the dominant
explanatory variable within  the framework of
salinization processes (11, 31, 33).

The relevance of Ca?* and Mg?* is consistent
with ion exchange and carbonate dissolution
processes, while K* serves as a complementary
marker linked to agricultural practices and
anthropogenic enrichment (11, 12).

To improve the individual interpretability
of the forecasts, the SHAP (Shapley Additive
Planations) method was applied. This method
allows us to visualize the marginal effect (direction
and magnitude) of each ion on the probability
of entering the critical class, thus supporting the
tractability of the model for management (33, 35).
Finally, binary classification maps were developed

in QGIS to represent the spatial distribution of

en Ciencias Agronémicas y Veterinarias

the influencing variables and the delimitation
of critical and non- critical zones, facilitating
the prioritization of vulnerable areas and the
optimization of monitoring with a reduced set
loss of

of parameters without substantial

performance (30).

DEVELOPMENT AND DISCUSSION

Water Quality Assessment using IWQI ,

In the Table 1, summarizes the distribution of
wells by IWQI-UA category and their operational
aggregation for the binary model. It is observed
that “Excellent” = 16 wells and “Good” = 11 wells,
which together make up the NON-CRITICAL ZONE
(n =27), while “Bad” = 8, “Very bad” = 3 and “Not
suitable” = 3 make up the CRITICAL ZONE (n = 14),
configuring a moderate imbalance that justifies
prioritizing metrics sensitive to the minority class
in the evaluation of the classifier, such as
recall, F1 and PR-AUC. This binary partition adopts
an IWQl threshold > 50 to define critical condition
(Poor, Very Poor and Unsuitable), consistent
with the practice reported in irrigation water

assessments in arid and coastal environments

(6,7).
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Table 1. Distribution of wells by IWQI-UA category and their operational aggregation for the binary

model.

waQl UA Number of Wells

Excellent 16 NON-CRITICAL ZONE (69.8%)
Good 11

Bad 8 CRITICAL ZONE (30.2%)

Very Bad 3

Not Suitable 3

Note. The binary classification representing 69.8% and 30.2% of the total wells, respectively.

Hydrochemical Facies

The Piper diagram Figure 2, shows a system
in evolution hydrochemistry (15). In the Table 2,
group uncritical concentrated towards carbonate
(Ca—Mg—HCO3), indicative of

facies recharge

waters, and a gradient progressive towards saline
facies in minor proportion (Na—Cl) where they are
located samples reviews (“Bad”, “Very bad”, “Not
suitable”), consistent with marine intrusion and

salinization in the coastal sector (39, 40).

Table 2. Group uncritical concentrated towards carbonate facies.

Hydrochemical facies Percentage Type

Interpretation

Recharge waters, low TDS, dominate in the middle- upper zone of

the aquifer.

They indicate exchange ionic progressive (Na* replacing Ca?*),

typical in stages salinization initials.

Ca—Mg-HCO, 68% Dominant
Ca—Na—-HCO, —Cl (mixed) 22% Transition
Na—Cl 10% Minority

Represents wells further close to the coast, affected by marine

mixing and overexploitation.

Note. The predominance of Ca—Mg—HCO; indicates recharge waters of low salinity, while the Na—Cl facies near the coast reflect progressive

salinization and seawater intrusion processes.
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Figura 2. Shows a system in evolution hydrochemistry. Note. The facies were classified based on major ion dominance
using Piper diagram interpretation. Preparation Own using EXCEL.

The cationic triangle show a dominance of
(Na*, K*) and a relative depletion of Ca?*, a pattern
compatible with ion exchange (replacement of
Ca?* by Na* in the exchange matrix), while in the
anionic triangle an increase in CI~ and a decrease

in HCOs™ + COs?™ are observed, reinforcing the

marine/evaporite mixing signal (36, 38). Estimating
COs?” from HCO3™ and pH using pKy(T) allowed for
adequate representation of the carbonate vortex
and improved sample projection in the diamond

field, which is critical in waters with high pH (25).
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Classification binary and performance of
learning models automatic

Machine learning algorithms evaluated in the

Figure 3, This research incorporated RF, SVM,

KNN and XGBoost (30, 32). The best models

had F1 scores between 0.88 and 0.90 and

ROC-AUC scores above 0.96. This means they

were very good at telling the difference between

important and where

unimportant

areas

XGBoost model stood out in particular with an
F1 score of 0.897 and a ROC-AUC of 0.968 so this
means thatitis both accurate and sensitive, and it
can also handle class imbalance (8, 33). Sensitivity
analysis Figure 4, Shows that the Random Forest
and XGBoost models correctly detected more
than 90% of the important samples. The SVM

model did the same, but with less variance (Recall

=0.86.

Comparison of Ranking Metrics

Accuracy Precision

. i

Recall F1-Score ROC-AUC

Metrics

Figura 3. Machine learning algorithms evaluated. Note. Elaboration own from the results obtained
in Python (Google Colab, 2025).

Class-wise recall of the binary classification models

Random Forest

YiGBoost

0.0 0.2 0.4

096
086

Figura 4. Sensitivity analysis. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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The ROC-AUC comparison Figure 5, indicates
that ensemble-based models (Random Forest and
XGBoost) maintained the highest discrimination

areas (AUC = 0.966 and 0.968, respectively),

followed by SVM (AUC = 0.974) and KNN (AUC =
0.943), confirming excellent separability between

classes (30, 34).

Area Under the ROC Curve
(binary discrimination)

SVM

AGBoost

Random Forest

KNN

0.0 0.2

0.974

0.968

0.966

0.4 0.6 0.8 1.0
ROC-AUC Score

Figura 5. The ROC-AUC comparison. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

The confusion matrices Figure 6, confirm that
the best-performing classifiers produced very few
type Il errors (false negatives). For XGBoost, 26 out
of 27 non-critical wells and 13 out of 14 critical
wells were correctly classified this corresponds to

Random Forest
F1=0.889

Non-Critical Zone

Real

Critical Zone

Non-Critical Zone
predicted values

Critical Zone

KNN
F1=0.846

Non-Critical Zone

1
@9%)

Critical Zone

Critical Zone

Non-Critical Zone
predicted values

an overall accuracy of over 94%. The performance
demonstrates that the model generalizes well
even in a moderately unbalanced sample without

overfitting.

SVM
F1=0.889

Non-Critical Zone

Real

Critical Zone

Non-Critical Zone Critical Zone
predicted values

XGBoost
F1=0.897

Non-Critical Zone

Real

Critical Zone

Non-Critical Zone
predicted values

Critical Zone

Figura 6. The confusion matrices . Note. Elaboration own from the results obtained in Python (Google Colab , 2025).
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Analysis detailed model XGBoost

The confusion matrices Figure 7, confirm that
the best-performing classifiers produced very few
type Il errors (false negatives). For XGBoost, 26 out

of 27 non-critical wells and 13 out of 14 critical wells

were correctly classified; this corresponds to an
overall accuracy of over 94%. The performance
demonstrates that the model generalizes well
even in a moderately unbalanced sample without

overfitting (34).

MNormalized Confusion Matrix

Mon-Critical Zone

Real

1.0
.-. I 0.8
(92.6%)

0.6

0.4

o) 15
o _ I )
0.0

Mon-Critical Zone

Critical Zone

Predicted Value

Figura 7. Analysis detailed model XGBoost. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

The probability distribution in Figure 8, makes
it easy to tell the difference between classes:
most non-critical samples are below 0.3, and most
critical samples are above 0.7. The best balance
between recall and precision was found by setting
the decision-bound threshold to 0.5. This value
provided the best balance between recall and
precision. This means that the model can be used
as an early warning system to detect deterioration

in groundwater quality. The sensitivity-accuracy

curve Figure 9, confirms this result and shows
an average precision (AP) of 0.931, indicating
excellent diagnostic performance despite the lack
of agreement between the datasets and the mean
(33, 8). These results indicate the high sensitivity of
the model in spotting key conditions (8) with great
values: Non-Critical Zone: precision = 0.962, recall
= 0.926. Critical Zone: precision = 0.867, recall =
0.929.

o 7
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Probability Distribution

Frequency
=
o
=

7.5

2.0

2.5

0.0

0.0 0.2

0.4

[ Maon-Critical Zone (real)
[ Critical Zone (real)
= = |mbral decision

e
0.6 0.8 1.0

Predicted probability (Critical Zone)

Figura 8. The probability distribution. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Comparative Evaluation

Evaluating Comparisons Figure 9, shows the
performance heatmap, which gives an overview
of the results of all classifiers. XGBoost, Random
Forest, and SVM showed the most consistent
performance across all metrics, with values above
0.85 for precision, recall, F1-score, and ROC-AUC.
KNN, on the other hand, had a lower recall (0.786),
which demonstrated their higher likelihood of

overfitting on small datasets (33). The plot Figure

10, shows that the top three models are very
similar as their accuracy, precision, and ROC-AUC
are almost the same. XGBoost, on the other hand,
had a slightly higher recall (0.93), which is useful
for finding important areas with few false negatives
(34). Overall, these results confirm that ensemble-
based analysis algorithms are robust because they
interpretability and predictive power

balance

better than distance (8, 30).
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Performance Heatmap

Accuracy

c
R=]
R
(=]
o
[/
0.6
(/4]
£% g
e &
0.4

F1-Score

0.968 0.966 0.974

ROC-AUC

XGBoost Random Forest SVM KNN
Model

Figura 9. Comparative Evaluation. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Radar Comparision-Top Models
a) XGBoost b) Random Forest

Accuracy Accuracy

10
03 [

Precision  ROC-AUG  Erecision
7

038 o

Fl-Score Recall Fl-Score Recall

c) SVM

Accuracy

Precision
92

F1-Score Recall

Figura 10. Radar comparision top models. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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Variable Reduction and

Improvement

Tracking

Theincremental ROCanalysis Figure 11, shows
that the Random Forest model maintains AUC
values above 0.94 even when only two features
are used. This demonstrates the robustness of the
model. The performance-costratio Figure12,shows

that the best configuration is the one with Na*,

Ca?*,HCOs~and K*, which reduces monitoring costs

en Ciencias Agronémicas y Veterinarias

by 43% without losing accuracy. The performance
curve shows that the predictive capacity stabilizes
when four hydrochemical variables are added,
with AUC = 0.960. This combination captures both
the signature carbonate recharge (Ca—HCOs) and
marine salinization trend (Na—Cl), strengthening
the predictions and chemical consistency of the

model (9, 2).

Curvas ROC - Comparacion Incremental

10 -
0.8 — |

0.6
0.4

0.2

Tasa de Verdaderos Positivos

0.0
0.0 0.2 0.4

=— 7 features (AUC=0.947)
3 features (AUC=0.974)
4 features (AUC=0.974)
5 features (AUC=0.971)
6 features (AUC=0.976)
7 features (AUC=0.968)

0.6 0.8 1.0

Tasa de Falsos Positivos

Figura 11. The incremental ROC analysis. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).

Trade-off:
Performance vs Cost

.
. @ ® O
0.92 - 6
00 @ ® .
@ 4]
5 0.88- 55
)
Q ©
0 086~ 8
o Optimal Point: 4,
L
o - z
0847 | (Na*, ca?*, HCO; ,K+)] ®
0.82 - 3
0.80 - I
1 1 1 1 2
0 20 40 60

Reduction in Monitoring Costs (%)

Figura 12. The performance-cost ratio. Note. Elaboration own from the results obtained in Python (Google Colab, 2025).
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Finally, the spatial map Figure 13, shows the
results of the binary classification. It shows that
nearshore wells are located in Critical Zones, which
is consistent with what was observed in the field

and what was learned from hydrogeochemical

indicators of marine intrusion. The feature
importance ranking supports these results by
showing that Na* is the most important predictor,

followed by (Ca%*, Mg?*, K*).
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Figura 13. Classification map binary. Nota. Spatial distribution map of groundwater quality index (WQI-UA) in the Caplina aquifer,
southern Peru.The map shows Critical areas (red—orange tones) are concentrated near the coast, influenced by seawater mixing
and over-extraction, whereas non-critical areas (blue—cyan tones) correspond to recharge zones of better quality.

CONCLUSION

Integrating machine-learning models with
hydrochemical indicators proved effective for
assessing and predicting groundwater quality in
a dry coastal aquifer such as Caplina. Ensemble

methods, particularly XGBoost and Random

Forest, achieved the strongest class separation
under class imbalance, with F1 scores > 0.89 and
ROC-AUC > 0.96, in line with recent evidence
on the advantages of boosting/bagging for non-
linear groundwater problems (31, 30, 8). From the

hydrochemical standpoint, Na*, Ca%*, Mg?* and

i/”
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K* emerged as the most informative predictors,
reflecting progressive salinization and Na*—Ca?*
ion-exchange processes that typify early stages of
marine intrusion (2, 12).

Model parsimony analyses showed that
reducing inputs from seven to four ions (Na*,
Ca?*, HCOs~, K*) preserved high performance

(F1 = 0.897; AUC = 0.960) while lowering
monitoring costs by 43%, supporting the design
of lean observation networks for hydrochemical
surveillance in resource-constrained settings (7).
The Piper facies distribution (Ca—Mg—HCO3s: 68%;
Na—Cl: 10%) is consistent with early salinization
during the 2022 survey, indicating a transition from
carbonate-recharge signatures toward coastal
saline influence as abstraction pressures increase.
Together, these results provide an operational
basis to prioritize critical zones and to deploy
cost-effective monitoring guided by a minimal, yet

chemically coherent, set of ions.
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