

pp. 252 - 263

Mitigación del drenaje ácido mediante interacción agua-caliza en el pasivo ambiental mina escuela Pompería, Puno Perú

Mitigation of acid drainage through water-limestone interaction in the environmental passivation of the school mine Pompería, Puno Perú

Mitigação da drenagem ácida por meio da interação água-calcário na passividade ambiental da mina escola Pompería, Puno Perú

ARTÍCULO ORIGINAL

Anibal Sucari León^{1,2} asucari@unap.edu.pe

Heinz Miguel Chura Cahuana^{1,2} hm.chura@unap.edu.pe

Herbert Ángel Quilca Gallegos¹
hquilca@unap.edu.pe

Jorge Luis Anahua Atencio¹ pirgeluis123anahua@gmail.com

Jesús Alberto Sutty Vilca¹ piesus.sutty@unap.edu.pe

Carmen Natalia Marón Mamani¹ (b) cmaron@unap.edu.pe

¹Universidad Nacional del Altiplano. Puno, Perú ²Instituto de Investigación y Desarrollo Andino Amazónico-IIDEAA. Puno, Perú

Escanea en tu dispositivo móvil o revisa este artículo en: https://doi.org/10.33996/revistaalfa.v9i27.411

Artículo recibido: 3 de abril 2025 / Arbitrado: 27 de mayo 2025 / Publicado: 10 de septiembre 2025

RESUMEN

El cacao es un cultivo tradicional y estratégico en la costa ecuatoriana, conocido por su diversidad genética y su importancia económica para el país. En este contexto, el presente estudio se realizó con el objetivo de analizar la cobertura vegetal y su evolución en los cantones Milagro, Vinces y Naranjal de la costa ecuatoriana, durante el período 2020 a 2023. La investigación se enfocó en el cultivo de cacao, evaluando su potencial y las condiciones ambientales para su desarrollo. Se empleó un enfoque cuantitativo y descriptivo, utilizando el Índice de Vegetación de Diferencia Normalizada (NDVI) como herramienta principal. Se analizaron imágenes satelitales de los años, 2020, 2021, 2022 y 2023 obtenidas de la plataforma USGS Earth Explorer. La información se procesó y analizó en el software ArcMap para generar mapas de NDVI y cuantificar la cobertura vegetal en diferentes categorías. Los resultados del estudio revelan una tendencia positiva en la cobertura vegetal de los cuatro cantones analizados, con un aumento gradual de las áreas con alta densidad vegetal (NDVI > 0.40) entre 2020 y 2023. Esta tendencia se asocia a la reforestación, recuperación de áreas degradadas y prácticas de manejo sostenible del suelo. Se concluye que el uso de Sistemas de Información Geográfica (SIG) y el análisis del Índice de Vegetación de Diferencia Normalizada (NDVI) se ha convertido en una herramienta fundamental para el monitoreo y la gestión efectiva de los cultivos de cacao.

Palabras clave: Cacao; Cobertura vegetal; NDVI; Reforestación; SIG

ABSTRACT

Cacao is a traditional and strategic crop in the Ecuadorian coast, known for its genetic diversity and economic importance for the country. In this context, the present study was conducted with the objective of analyzing the vegetation cover and its evolution in the cantons of Milagro, Vinces, and Naranjal on the Ecuadorian coast, during the period from 2020 to 2023. The research focused on cacao cultivation, evaluating its potential and environmental conditions for its development. A quantitative and descriptive approach was employed, using the Normalized Difference Vegetation Index (NDVI) as the main tool. Satellite images from the years 2020, 2021, 2022, and 2023 were analyzed, obtained from the USGS Earth Explorer platform. The information was processed and analyzed using ArcMap software to generate NDVI maps and quantify vegetation cover in different categories. The study results reveal a positive trend in vegetation cover in the four analyzed cantons, with a gradual increase in areas with high vegetation density (NDVI > 0.40) between 2020 and 2023. This trend is associated with reforestation, recovery of degraded areas, and sustainable soil management practices. It is concluded that the use of Geographic Information Systems (GIS) and the analysis of the Normalized Difference Vegetation Index (NDVI) has become a fundamental tool for the effective monitoring and management of cacao crops.

Key words: Cacao; Vegetal Cover; NDVI; Reforestación; GIS

RESUMO

O cacau é um cultivo tradicional e estratégico na costa equatoriana, conhecido por sua diversidade genética e importância econômica para o país. Nesse contexto, o presente estudo foi realizado com o objetivo de analisar a cobertura vegetal e sua evolução nos cantões de Milagro, Vinces e Naranjal na costa equatoriana, durante o período de 2020 a 2023. A investigação se concentrou no cultivo de cacau, avaliando seu potencial e as condições ambientais para seu desenvolvimento. Foi empregada uma abordagem quantitativa e descritiva, utilizando o Índice de Vegetação de Diferença Normalizada (NDVI) como ferramenta principal. Imagens satelitais dos anos 2020, 2021, 2022 e 2023 foram analisadas, obtidas da plataforma USGS Earth Explorer. As informações foram processadas e analisadas no software ArcMap para gerar mapas de NDVI e quantificar a cobertura vegetal em diferentes categorias. Os resultados do estudo revelam uma tendência positiva na cobertura vegetal dos quatro cantões analisados, com um aumento gradual das áreas com alta densidade vegetal (NDVI > 0.40) entre 2020 e 2023. Essa tendência está associada à reflorestação, recuperação de áreas degradadas e práticas de manejo sustentável do solo. Conclui-se que o uso de Sistemas de Informação Geográfica (SIG) e a análise do Índice de Vegetação de Diferença Normalizada (NDVI) se tornou uma ferramenta fundamental para o monitoramento e a gestão eficaz dos cultivos de cacau.

Palavras-chave: Cacau; Cobertura Vegetal; NDVI; Reflorestamento; SIG

INTRODUCCIÓN

El drenaje ácido de mina (DAM) constituye uno de los principales problemas ambientales derivados de las actividades extractivas, ya que la oxidación de sulfuros metálicos genera aguas con alta acidez, sulfatos y metales pesados disueltos, comprometiendo la calidad de las aguas superficiales y subterráneas, la estabilidad geoquímica del terreno y la biota circundante. Este fenómeno, común en botaderos y relaves mineros, ha sido reconocido como una de las fuentes más persistentes de contaminación hídrica y requiere soluciones sostenibles que reduzcan su impacto sobre los ecosistemas acuáticos y la salud humana (1,2).

La contaminación por metales pesados representa una amenaza global para los ecosistemas acuáticos y la salud humana. Diversos estudios han demostrado que la presencia de elementos como Mn, Cu, Pb, Zn, Ni, Cr, Co, As, Hg y Cd en aguas y suelos urbanos excede límites recomendados por los organismos internacionales, atribuyéndose principalmente a fuentes antropogénicas como la minería, la industria metalúrgica y la descarga de efluentes de forma similar investigaciones realizadas en zonas urbanas de Bilaspur evidenciaron que los niveles promedio de Mn, Ni, Cr, As y Cu superaron los límites establecidos por la EPA, destacando una contaminación de baja a moderada pero con riesgos potenciales para la salud infantil (3). De forma

similar, estudios en aguas subterráneas de Gurgaon y Faridabad (India) revelaron concentraciones de Ni, Pb y Cr superiores a los valores permisibles de la OMS, con variaciones estacionales asociadas a la calidad del agua (4). Asimismo, el análisis de la calidad del agua en la región de Kannur, mediante sistemas de información geográfica (SIG) y estadística multivariada, permitió identificar zonas críticas con presencia de plomo y necesidad de monitoreo permanente (5).

Diversas investigaciones se han orientado al desarrollo de métodos de tratamiento y neutralización de efluentes ácidos mediante el uso de materiales carbonatados. Por ejemplo, se ha demostrado que la interacción entre agua ácida y roca caliza puede actuar como un mecanismo natural de mitigación, cuya eficiencia depende de la mineralogía del carbonato y de las condiciones hidrológicas del entorno (6). Asimismo, estudios han comprobado materiales ricos que en carbonato de calcio, como el polvo de horno cementero (CKD), logran elevar el pH de los drenajes ácidos hasta valores neutros (7,7-8,0) y eliminar hasta el 70 % de sulfatos, produciendo precipitados reutilizables en la industria cementera (7).

Otras investigaciones relacionadas con los procesos de interacción agua-carbonato en medios naturales y artificiales evidencian que la disolución y precipitación de minerales como la calcita (CaCO₃) y la dolomita (CaMg(CO₃)₂)

son altamente eficaces para la neutralización de soluciones ácidas, reduciendo la movilidad de metales (8). Sin embargo, la efectividad del tratamiento con caliza puede verse limitada por la formación de recubrimientos ("armoring") de óxidos e hidróxidos de hierro que disminuyen su capacidad de reacción. En respuesta, nuevas tecnologías, como los reactores de lecho de caliza pulsado con CO₂, han demostrado mejorar la disolución y mantener un pH operativo superior a 6, evitando la pasivación del material (9).

Desde el enfoque de la gestión ambiental, los Pasivos Ambientales Mineros (PAM) requieren estrategias integrales que incluyan la identificación, evaluación y priorización de sitios contaminados para su remediación (10). En este contexto, el pasivo ambiental mina escuela Pompería, ubicado a 8 km de la ciudad de Puno, representa un caso emblemático. Este sitio, explotado desde la época colonial, presenta efluentes con bajo pH y altos niveles de toxicidad, los cuales son drenados hacia riachuelos que alimentan la flora y fauna local, afectando la producción ganadera y los ecosistemas del entorno (11).

A nivel técnico, diferentes alternativas de tratamiento de drenajes ácidos han sido aplicadas con éxito en minas de Latinoamérica. En Oruro (Bolivia), por ejemplo, la neutralización y precipitación con cal en interior de mina demostró ser la opción más viable técnica, económica y ambientalmente, logrando un pH de descarga de

6,7 y una remoción superior al 99 % de metales (12). De forma similar, en el Perú, la optimización del tratamiento de efluentes ácidos mediante neutralización con hidróxido de calcio permitió cumplir los límites máximos permisibles (LMP) del D.S. N.º 010-2010-MINAM, garantizando la remoción de metales pesados en más del 99 % (13).

En el ámbito toxicológico, la exposición prolongada a metales pesados ha sido asociada con efectos biológicos adversos. En estudios experimentales, se observó que el consumo de productos enriquecidos con selenio (Se) tiene un efecto protector frente al daño hepático, renal y cardiovascular causado por metales como Al, Cd y Pb, reduciendo la toxicidad sistémica en animales de laboratorio, este tipo de investigaciones evidencia la relevancia de mitigar la exposición a metales desde la fuente, mediante técnicas de tratamiento que reduzcan su movilidad y biodisponibilidad en el ambiente (14).

Por otro lado, investigaciones geotécnicas y geoquímicas recientes han evidenciado el potencial de los minerales carbonatados para controlar la movilidad de contaminantes en ambientes subterráneos. En estudios de remoción simultánea de Ni²⁺ y PO₄³⁻, la caliza activada térmicamente mostró mayor eficiencia de adsorción que la caliza natural, gracias al incremento de su reactividad superficial tras la ruptura de los cristales de calcita (15). Asimismo,

análisis sobre la interacción de hidrógeno disuelto con rocas carbonatadas demostraron que el agua saturada en H₂ induce obstrucción mecánica de poros y leve precipitación de calcita, lo cual resalta la relevancia de los procesos físicos y geoquímicos en medios porosos carbonatados (16). En el ámbito geotermal, la precipitación mineral en el campo Clarke Lake (Canadá) permitió identificar la formación de dolomita, calcita y barita bajo variaciones de temperatura y composición iónica, confirmando la efectividad de los procesos de interacción agua—carbonato en la reducción de iones metálicos disueltos (8).

geoambiental, Desde una perspectiva diversos estudios han evaluado estrategias de remoción y estabilización de contaminantes metálicos utilizando materiales naturales o reciclados ricos en carbonato. Por ejemplo, la aplicación de enmiendas de carbonato de calcio (Calciprill) y silicato de sodio en suelos ácidos tropicales mejoró la adsorción de amonio (NH₄+), reduciendo la lixiviación de nutrientes y la eutrofización de cuerpos de agua, lo cual resalta el papel de los compuestos carbonatados en la regulación geoquímica de medios ácidos (6). De forma complementaria, la carbonatación forzada de pasta de concreto reciclado propuesta como una alternativa de captura y utilización de CO2, donde el proceso de carbonatación no solo reduce las emisiones, sino que inmoviliza metales pesados en matrices estables (17). En esta línea, la reutilización de residuos de travertino como agregado en concreto permeable demostró una remoción eficiente de metales como Cd²⁺, Cu²⁺ y Pb²⁺, superando el 95 % en ensayos de inmersión, debido a la porosidad y el alto contenido de CaO del material (18).

En materia de remediación y materiales sostenibles, se han explorado técnicas complementarias como el uso de microorganismos efectivos (EM) en concretos caliza-arcilla calcinada (LC3) impresos en 3D, los cuales promueven la formación de calcita y mejoran la cohesión estructural del material, evidenciando el potencial biotecnológico de la calcificación inducida (19). Por otra parte, el uso de fosfoyeso como aglutinante en suelos expuestos a lluvia ácida demostró una reducción significativa en la lixiviación de calcio y una mayor resistencia a la compresión, atribuyéndose a la formación de estructuras cristalinas densas y de etringita acicular (20).

Finalmente, estudios en sitios contaminados por minería y metalurgia, como el complejo de fundición abandonado en Chenzhou (China), revelaron una distribución heterogénea de arsénico, plomo, cadmio y talio en capas arcillosas de baja permeabilidad, lo que demuestra la persistencia de los contaminantes y la necesidad de estrategias de remediación basadas en modelos hidrogeológicos y geoquímicos precisos (21). Asimismo, el monitoreo de agua potable en

Yasuj (Irán) evidenció que, aunque la mayoría de los niveles de metales se encontraban dentro de los límites permisibles, los infantes presentaban vulnerabilidad por acumulación de arsénico y cadmio, lo que resalta la urgencia de controlar las fuentes de contaminación y aplicar tratamientos preventivos (22).

Frente a ello, la presente investigación se justifica en la necesidad de proponer un proceso sostenible y de bajo costo que aproveche la interacción natural entre el agua ácida y la roca caliza como mecanismo mitigador del drenaje ácido en el pasivo ambiental Pompería, Puno. Este enfoque busca no solo reducir la acidez y la concentración de metales disueltos, sino también evaluar la capacidad de la caliza local para estabilizar el sistema hidrogeoquímico y disminuir la carga contaminante hacia los cuerpos receptores.

El objetivo fue evaluar el proceso de mitigación del drenaje ácido mediante la interacción agua – caliza en el pasivo ambiental Mina Escuela Pompería, Puno Perú, determinando su eficacia en la neutralización del pH y la reducción de concentraciones de metales pesados presentes en el efluente minero. Determinar el nivel de concentración de los parámetros del efluente minero (agua de cuneta) antes del contacto con la roca caliza, determinando parámetros como pH y concentración de metales pesados (Mercurio, Cadmio, Plomo, Cromo). Analizar las

variaciones de los niveles de concentración del efluente minero después del paso por la cuneta empedrada con roca caliza de aproximadamente 25 metros, evaluando los cambios en el pH y las concentraciones metálicas.

MATERIALES Y MÉTODOS

El pasivo ambiental mina Pompería está ubicada en la salida a Moquegua a 7 km del distrito, provincia y departamento de Puno - Perú, ahora denominada mina escuela de la Facultad de Ingeniería de Minas de la Universidad Nacional del Altiplano. Se toma como muestra el efluente agua ácida que vierte del interior de la bocamina en el cual tiene una cuneta empedrada con roca caliza aproximadamente 25 m y cuenta con una poza de sedimentación el cual de la misma forma este empedrado con roca caliza.

Se realizó un análisis del pH con el equipo multiparámetro HANNA HI 9899 medición de valores in situ. Por otra parte, se tomó muestras de 1 litro de agua por punto de muestreo para el análisis de metales pesados fue aplicado el método de ensayo por digestión Multi ácida 4210 MP-AES con el Espectrofotómetro de Emisión atómica por Plasma Microondas 4210 MP-AES pertenecientes al Laboratorio de Monitoreo y Evaluación Ambiental de la Facultad de Ingeniería de Minas – UNA Puno.

Presenta un enfoque cuantitativo ya que los datos que se analizaron fueron numéricos como el valor del pH, concentraciones de los metales pesados de Hg, Cd, Pb y Cr, respecto al tipo de investigación fue no experimental ya que no se manipuló las variables durante la investigación, el diseño fue descriptivo transversal ya que se describió las características del agua ácida antes y después del contacto con la roca caliza, se tomó las muestras y mediciones in situ en un solo momento en el mes de octubre del año 2024.

RESULTADOS Y DISCUSIÓN

Para lograr el objetivo se realizaron las mediciones in situ con el equipo multiparámetro HANNA HI 9899 y en el Laboratorio de Monitoreo y Evaluación Ambiental de la Facultad de Ingeniería de Minas — UNA Puno con tres repeticiones, donde se utilizó el Espectrofotómetro de Emisión atómica por Plasma Microondas 4210 MP-AES el efluente que vierte de interior de la mina escuela Pompería, antes y después del contacto con la roca caliza.

Tabla 1. Parámetros antes del contacto con la roca caliza.

Parámetros PM-1	R-1	R-2	R-3	ECAs categoría 3
Potencial de hidrógeno pH	6,36	6,37	6,35	6,5-8,4
Mercurio Hg (ppm)	5,00	4,00	4,00	0,01
Cadmio Cd (ppm)	10,00	11,00	10,00	0,05
Plomo Pb (ppm)	107,00	287,00	216,00	0,05
Cromo Cr (ppm)	6,00	8,00	7,00	1,00

La Tabla 1, evidencia que los valores del pH son considerados ácidos se encuentran por debajo del límite del ECAs del agua categoría III, respecto a los parámetros del Hg, Cd, Pb y Cr los valores superan los límites del ECAs para agua categoría III, esto quiere decir que no es apto para ser utilizado como bebida para animales.

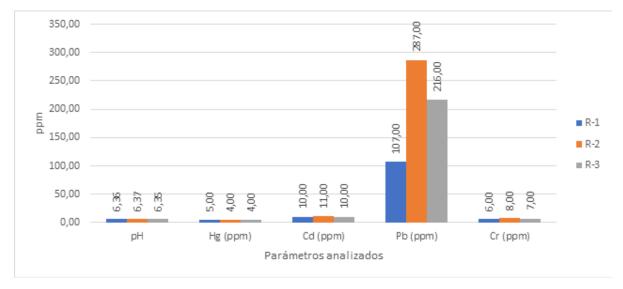


Figura 1. Repeticiones de los parámetros antes del contacto con la roca caliza.

La Figura 1, permite observar que los valores que se analizaron in situ y en laboratorio del efluente que es vertido de interior mina son muy similares en las 3 repeticiones que se realizaron en el análisis del valor de pH y metales pesados como el Mercurio, Cadmio, Plomo y Cromo.

Posteriormente se tuvo que realizar el análisis del efluente minero después de su recorrido del empedrado con roca caliza una longitud de 25 m y depositándose en la primera poza de sedimentación el cual también se encuentra empedrado con roca caliza, teniendo los siguientes resultados.

Tabla 2. Parámetros después de contacto con la roca caliza.

Parámetros PM-2	R-1	R-2	R-3	ECAs - categoría 3
Potencial del hidrógeno pH	10,76	10,74	10,75	6,5-8,4
Mercurio Hg (ppm)	6,00	8,00	6,00	0,01
Cadmio Cd (ppm)	7,00	7,00	6,00	0,05
Plomo Pb (ppm)	89,00	63,00	43,00	0,05
Cromo Cr (ppm)	4,00	3,00	3,00	1,00

La Tabla 2, muestra que los resultados del análisis de los parámetros después de haber estado en contacto con la roca caliza los 25 metros de longitud, las repeticiones tienen valores de pH son similares y sobrepasan los límites del ECAs para aguas categoría 3 esto quiere decir que es

alcalino, respecto a los parámetros de los metales pesados Mercurio, Cadmio, Plomo y Cromo se encuentran por encima de los límites del ECAs de agua categoría 3 esto quiere decir que el agua no es apto para la bebida de los animales.

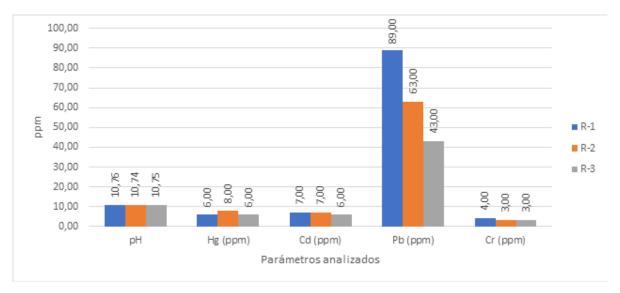


Figura 2. Repeticionesde los parámetros después de contacto con la roca caliza.

La Figura 2, evidencia que los resultados analizados in situ y en laboratorio son similares entre las 3 repeticiones que se realizó en la muestra de la primera poza de sedimentación,

cabe mencionar que los parámetros no se encuentran dentro de los límites que presenta los ECAs de agua categoría 3.

Tabla 3. Comparación de los parámetros analizados.

Parámetros	Antes del contacto con la roca caliza	Después de 25 m de contacto con la roca caliza	ECAs - categoría 3
Potencial de hidrógeno pH	6,36	10,75	6,5-8,4
Mercurio Hg (ppm)	4,33	6,67	0,01
Cadmio Cd (ppm)	10,33	6,67	0,05
Plomo Pb (ppm)	203,33	65,00	0,05
Cromo Cr (ppm)	7,00	3,33	1,00

La Tabla 3, evidencia la evaluación del proceso de mitigación del drenaje ácido mediante la interacción agua – caliza en el pasivo ambiental Mina Escuela Pompería, Puno Perú, donde los valores del pH se incrementaron de 6,36 a 10,75 paso de ácido a ser alcalino, respecto a los metales pesados, se evidencia que en el Mercurio un

incremento de 4,33 a 6,67 y en referencia los metales pesados de Cadmio, Plomo y Cromo la concentración se ha reducido sin embargo superan los límites de los ECAs del agua categoría 3, esto quiere decir que la mitigación realizada con la roca caliza tiene un efecto positivo en el pH y los metales pesados excepto en el Mercurio.

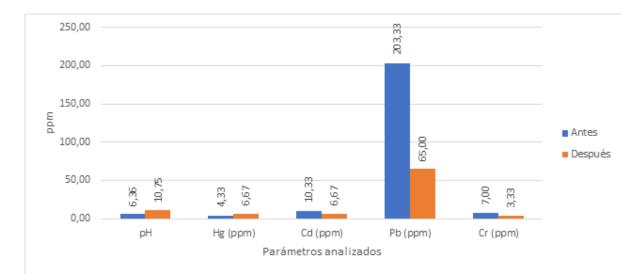


Figura 3. Comparación de los resultados de metales pesados & ECAs Subcategoría B.

La Figura 3, muestra el efecto positivo de la roca caliza en la mitigación del agua ácida en una longitud de 25 m de empedrado y depositado en la primera poza de sedimentación el cual se encuentra empedrado con roca caliza, sin embargo, la reducción de los parámetros y el incremento del valor de pH y Hg no basta para ser utilizado como bebida para los animales, comparando con los ECAs para aguas categoría 3.

Discusión

Los parámetros que se analizaron del efluente antes del contacto con la roca caliza fueron los siguientes en promedio de las tres repeticiones el pH igual a 6,36 y metales pesados el Hg igual a 4,33 ppm, en Cadmio igual a 10,33 ppm, en Plomo igual a 203,33 y en Cromo igual a 7 ppm, estos valores se encuentran por encima de los ECAs para aguas categoría 3, considerados no aptos

para ser utilizados como bebidas para animales. Resultados corroborados por (3) ya que llegan a la conclusión los metales pesados como el Mn, Cu, Zn, Pb, Co, As, Cr, Hg y Cd superan los límites internacionales establecidos y son considerados como una amenaza para los seres vivos.

parámetros analizados del efluente después del contacto con la roca caliza en una longitud de 25 m de cuneta empedrado hasta llegar a la primera poza de sedimentación se tuvieron los siguientes resultados de incremento en pH de 6,36 a 10,75 de forma similar en Hg de 4,33 a 6,67 ppm sin embargo la reducción se dio en el Cadmio de 10,33 a 6,67 ppm, en Plomo de 203,33 a 65,00 ppm y en Cromo de 7,00 a 3,33 ppm. Por otra parte (6) señala que en varios estudios se recurrió al tratamiento y neutralización de los efluentes ácidos con la aplicación del carbonatos con la

interacción del agua ácida y roca caliza. De forma similar (7) menciona que el carbonato de calcio y el polvo de horno cementero logran elevar los valores del pH y eliminar el 70 % de sulfatos. Sin embargo (9) afirma que la roca caliza tiene limitaciones porque presenta una formación de recubrimiento de óxidos e hidróxidos de hierro que reduce la capacidad de reacción.

CONCLUSIONES

Se logró determinar el nivel de concentración de los parámetros del efluente minero (agua de cuneta) antes del contacto con la roca caliza, determinando parámetros como pH = 6,36 en promedio de las tres repeticiones y concentración de metales pesados como el Mercurio = 4,33 ppm, Cadmio = 10,33 ppm, Plomo = 203,33 ppm y Cromo = 7,00 ppm siendo estos valores superiores respecto a los ECAs para aguas categoría 3.

Se analizó las variaciones de los niveles de concentración del efluente minero después del paso por la cuneta empedrada con roca caliza de aproximadamente 25 metros, evaluando los cambios en el pH incrementó de 6,36 a 10,75 y las concentraciones de metales pesados donde el Mercurio incrementó de 4,33 a 6,67 ppm, Cadmio redujo de 10,33 a 6,67 ppm, Plomo redujo de 203,33 a 65,00 y en Cromo redujo de 7,00 a 3,33 ppm.

La evaluación del proceso de mitigación del drenaje ácido mediante la interacción agua – caliza en el pasivo ambiental Mina Escuela

Pompería, Puno Perú, tiene un efecto positivo ya que incrementó el valor del pH el 69,03 % pasando de ácido a ser alcalino, en Mercurio incremento el 53,85 % y en Cadmio la reducción fue el 35,48 %, en Plomo la reducción fue el 68, 03 % y en Cromo la reducción fue el 52,38 %, estos resultados muestran que amerita aplicar otro método para continuar con la mitigación del efluente de mina hasta que se encuentre dentro de los ECAs para aguas categoría 3.

CONFLICTO DE INTERESES. Los autores declaran que no existe ningún conflicto de intereses para la publicación del presente artículo científico.

REFERENCIAS

- 1. Wei M, Pan A, Ma R, Wang H. Migration characteristics and human health risk assessment of selenium and heavy metals in rhizosphere soil-crop system in high geological background area of southern Qinling Mountains: A case study of Shiquan County, Shaanxi, China. Ecotoxicol Environ Saf. 2025;294:118013. https://doi.org/10.1016/j.ecoeny.2025.118013
- 2. Zamora G, Meza R. Formación, prevención e innovación en el tratamiento de drenaje ácidos en operaciones mineras. Rev Medio Ambient Min y Minería. 2022;7(1):3–21. http://www.scielo.org.bo/scielo.php?pid=S2519-53522022000100001&script=sci arttext
- **3.** Bhandari A, Sangeeta. Distribution and assessment of heavy metals in sediments of Bilaspur, Central India: Implications on ecological risk and human health hazard. Environ Pollut Manag. 2025;2:182–95. https://doi.org/10.1016/j.epm.2025.07.001
- **4.** Prajapati A, Tanwar D, Yadav S, Bajar S. Assessment of Heavy Metal Contamination and Seasonal Variability in Groundwater of Indian

NCR: Geospatial and Statistical Approach. Clean Water. 2025;4:100107: https://doi.org/10.1016/j.clwat.2025.100107

- **5.** Arumugam T, Kinattinkara S, Vellingiri K, C A. A GIS-based assessment of groundwater quality and public health risks of heavy metals in Kannur, Kerala. Clean Water. 2025;4:100113. https://doi.org/10.1016/j.clwat.2025.100113
- **6.** Ng J, Ahmed O, Omar L, Jalloh M, Kwan Y, Musah A, et al. Mitigating water pollution by nitrogen fertilizers through amending ammonium sorption in an acid soil using Calciprill and sodium silicate. Desalin Water Treat. 2024;319:100489. https://doi.org/10.1016/j.dwt.2024.100489
- **7.** Martínez E, Tobón J, Morales J. Coal acid mine drainage treatment using cement kiln dust. Dyna. 2014;81(186):87.
- **8.** Hassani K, Zheng W, Shrestha S. Experimental study on mineral precipitation prediction and mitigation for geothermal fluids in Clarke Lake Field in British Columbia, Canada. Geothermics. 2025;133(July):103458. https://doi.org/10.1016/j.geothermics.2025.103458
- **9.** Hammarstrom J, Sibrell P, Belkin H. Characterization of limestone reacted with acidmine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Appl Geochemistry. 2003;18(11):1705–21.
- **10.** Guzmán F, Arranz J, Smoll L, Collahuazo L, Calderón E, Otero O, et al. Pasivos ambientales mineros: Manual para el inventario de minas abandonadas o paralizadas. Asoc Serv Geol Minería Iberoam [Internet]. 2020;52. Available from: https://asgmi.org/wp-content/uploads/2020/06/Manual-Inventario-PAM-y-Anexos.pdf
- **11.** Marin E, Escobar F. Drenaje De Aguas Y Pasivos Ambientales En La Inactiva Mina. Rev Investig Alto Andin. 2014;16: 2306-8582 V.D: 2313-2957):41–8. https://dialnet.unirioja.es/servlet/articulo?codigo=5607227
- **12.** Zamora G, Trujillo E. Planta De Tratamiento En Interior Mina De Las Aguas Ácidas De La Mina San José Oruro Bolivia. Prim Premio II Feria Nac Investig Cienc y Tecnol del Sist Univ Boliv. 2016;7.

- Available from: http://www.scielo.org.bo/scielo.php?pid=S2519-53522016000100001&script=sci_arttext
- **13.** Márquez M, Osvaldo E. Optimización en el tratamiento de efluentes ácidos de una compañía minera y cumplimiento de límites máximos permisibles. SciELO. 2024;9(1):1–20. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522024000100002
- **14.** El-Desoki W, Osman H, Moneeb H, Hamad G, Alharbi H, Alwutayd K, et al. Innovative low-fat cheese with selenium: Physiological benefits amidst heavy metal exposure. J Agric Food Res. 2025;22:102120. https://doi.org/10.1016/j. jafr.2025.102120
- **15.** Trach Y, Melnychuk V, Trach R. Removal of cationic and anionic pollutants from water solutions using Ukrainian limestones: a comparative analysis. Desalin Water Treat. 2022;275(December 2021):24–34. https://doi.org/10.5004/dwt.2022.28426
- **16.** Cerepi A, Loisy C. International Journal of Hydrogen Energy Effect of H 2 -rich water percolation in porous limestone core: simulation of a leakage in a shallow carbonate freshwater aquifer. Int J Hydrogen Energy. 2025;171(June).
- **17.** Park K, Zajac M, Matschei T, Vollpracht A. The fate of heavy metals in recycled concrete paste upon enforced carbonation: A review. Resour Conserv Recycl Adv. 2025;28(September):200289. https://doi.org/10.1016/j.rcradv.2025.200289
- **18.** Li T, Xia J, Tang X. Exploring the efficacy of travertine pervious concrete pavement: A novel approach for urban runoff heavy metal mitigation. Case Stud Constr Mater. 2024;21(July):e03556. https://doi.org/10.1016/j.cscm.2024.e03556
- **19.** Ibrahim K, van Zijl P, Babafemi A. Mitigation of lack of fusion in 3D printed limestone calcined clay cement concrete induced by effective microorganisms. Case Stud Constr Mater. 2024;20(March):e03176. https://doi.org/10.1016/j.cscm.2024.e03176
- **20.** Bian X, Xiao J, Zhang T, Zeng L. Mitigating acid rain effects on stabilized soils: the role of phosphogypsum in leaching resistance. J Rock Mech

Geotech Eng. 2025. https://doi.org/10.1016/j.jrmge.2025.04.031

- **21.** Xia W, Zhao Z, Ke-neng Z, Ze-yu L, Yong H, Huimin W. Spatial distribution and risk assessment of heavy metal pollution at a typical abandoned smelting site. Results Eng. 2025;26(April):105281. https://doi.org/10.1016/j.rineng.2025.105281
- **22.** Fallahizadeh S, Nouredin S, Hossaini A. Journal of Food Composition and Analysis Health risk assessment of heavy metals in drinking water reservoirs of Yasuj Iran using Monte Carlo simulation and sensitivity analysis. J Food Compos Anal. 2025;148(P3):108398. https://doi.org/10.1016/j. jfca.2025.108398